Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 396-405 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.396


References

1.    Beard M.C., Luther J.M., and Nozik A.J. The promise and challenge of nanostructured solar cells. Nature nanotechnology. 2014. 9, No. 12. P. 951–954.
https://doi.org/10.1038/nnano.2014.292
 
2.    Alferov Z.I., Andreev V.M., and Rumyantsev V.D. Solar photovoltaics: Trends and prospects. Semiconductors. 2004. 38, Issue 8. P. 899–908.
https://doi.org/10.1134/1.1787110
 
3.    Yan B., Yue G., Xu X., Yang J., and Guha S. High efficiency amorphous and nanocrystalline silicon solar cells. phys. status solidi. 2010. 207, Issue 3. P. 671–677.
 
4.    Lewis N.S. Toward cost-effective solar energy use science. Science. 2007. 315, Issue 5813. P. 798–801.
https://doi.org/10.1126/science.1137014
 
5.    Sondergaard R., Hosel M., Angmo D., Larsen-Olsen T.T., and Krebs F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today. 2012. 15, No. 1. 36–49.
https://doi.org/10.1016/S1369-7021(12)70019-6
 
6.    Birkholz M., Selle B., Conrad E., Lips K., and Fuhs W. Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J. Appl. Phys. 2000. 88, No. 7. P. 4376–4379.
https://doi.org/10.1063/1.1289783
 
7.    Rech B., Roschek T., Müller J., Wieder S., and Wagner H. Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol. Energy Mater. Sol. Cells. 2001. 66, No. 1. 267–273.
https://doi.org/10.1016/S0927-0248(00)00183-5
 
8.    van Veen M.K., van der Werf C.H.M., and Schropp R.E.I. Tandem solar cells deposited using hot-wire chemical vapor deposition. J. Non.-cryst. Solids. 2004. 338-340. P. 655–658.
https://doi.org/10.1016/j.jnoncrysol.2004.03.071
 
9.    Mai Y., Klein S., Carius R., Stiebig H., Houben L., Geng X., and Finger F. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J. Non.-cryst. Solids. 2006. 352. P. 1859–1831.
https://doi.org/10.1016/j.jnoncrysol.2005.11.116
 
10.    Li H., Franken R.H., Stolk R.L., van der Werf C.H.M., Rath J.K., and Schropp R.E.I. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique. J. Non.-cryst. Solids. 2008. 354, No. 19. P. 2087–2091.
https://doi.org/10.1016/j.jnoncrysol.2007.10.046
 
11.    Amrani R., Pichot F., Chahed L., and Cuminal Y. Amorphous-nanocrystalline transition in silicon thin films obtained by argon diluted silane PECVD. Cryst. Struct. Theory Appl. 2012. 1, No. 3.
https://doi.org/10.4236/csta.2012.13011
 
12.    Fugallo G. and Mattoni A. Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon. Phys. Rev. B. 2014. 89, No. 4. P. 045301.
https://doi.org/10.1103/PhysRevB.89.045301
 
13.    Nast O. and Hartmann A.J. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. J. Appl. Phys. 2000. 88. P. 716.
https://doi.org/10.1063/1.373727
 
14.    Jeon M., Jeong C., and Kamisako K. Tin induced crystallisation of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 2010. 26, No. 7. P. 875–878.
https://doi.org/10.1179/026708309X12454008169500
 
15.    Mohiddon M.A. and Krishna M.G. Growth and optical properties of Sn–Si nanocomposite thin films. J. Mater. Sci. 2012. 47, No. 19. 6972–6978.
https://doi.org/10.1007/s10853-012-6647-0
 
16.    van Gestel D., Gordon I., and Poortmans J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells. 2013. 119. P. 261–270.
https://doi.org/10.1016/j.solmat.2013.08.014
 
17.    Mohiddon M.A. and Krishna M.G. Chapter 17: Metal Induced Crystallization. In: Crystallization – Science and Technology. Ed. By Marcello Rubens Barsi Andreeta. InTech, 2012.
https://doi.org/10.5772/50064
 
18.    Voitovych V.V., Neimash V.B., Krasko N.N., Kolosiuk A.G., Povarchuk V.Y., Rudenko R.M., Makara V.A., Petrunya R.V., Juhimchuk V.O., and Strelchuk V.V. The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors. 2011. 45, No. 10. Article 1281.
https://doi.org/10.1134/S1063782611100253
 
19.    Neimash V.B., Poroshin V.M., Kabaldin A.M., Yukhymchuk V.O., Shepelyavyi P.E., Makara V.A., and Larkin S.Y. Microstructure of thin Si−Sn composite films. Ukr. J. Phys. 2013. 58. P. 865.
https://doi.org/10.15407/ujpe58.09.0865
 
20.    Neimash V., Poroshin V., Shepeliavyi P., Yukhymchuk V., Melnyk V., Kuzmich A., Makara V., and Goushcha A.O. Tin induced a-Si crystallization in thin films of Si-Sn alloys. J. Appl. Phys. 2013. 114, No. 21. P. 213104.
https://doi.org/10.1063/1.4837661
 
21.    Neimash V.B., Goushcha A.O., Shepeliavyi P.Y., Yukhymchuk V.O., Danko V.A., Melnyk V.V. and Kuzmich A.G. Mechanism of tin-induced crystallization in amorphous silicon. Ukr. J. Phys. 2014. 59. P. 1168–1176.
https://doi.org/10.15407/ujpe59.12.1168
 
22.    Neimash V.B., Goushcha A.O., Shepeliavyi P.Y., Yukhymchuk V.O., Danko V.A., Melnyk V.V. and Kuzmich A.G. Self-sustained cyclic tin induced crystallization of amorphous silicon. J. Mat. Res. 2015. 30, No. 20. 3116–3124.
https://doi.org/10.1557/jmr.2015.251
 
23.    Neimash V., Shepelyavyi P., Dovbeshko G., Goushcha A.O., Isaiev M., Melnyk V., Didukh O., and Kuzmich A. Nanocrystals growth control during laser annealing of Sn:(α-Si) composites. J. Nanomater. 2016. 2016. Article ID 7920238, 8 p.
 
24.    Richter H., Wang Z.P., and Ley L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981. 39, Issue 5. P. 625–629.
https://doi.org/10.1016/0038-1098(81)90337-9
 
25.    Campbell I.H. and Fauchet P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986. 58, No. 10. P. 739-741.
https://doi.org/10.1016/0038-1098(86)90513-2
 
26.    Hiraki A. Low Temperature Reactions at Si/metal Interfaces; What Is Going on at the Interfaces? Surf. Sci. Repts. 1983. 3, Issue 7. P. 357–412.
https://doi.org/10.1016/0167-5729(84)90003-7
 
27.    Akhmanov S.A., Emel'yanov V.I., Koroteev N.I., Seminogov V.N., Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics. Sov. Phys. Uspekhi. 1985. 28, No. 12. P. 1084–1124.
https://doi.org/10.1070/PU1985v028n12ABEH003986
 
28.    Plaksin O., Takeda Y., Amekura H., Kishimoto N., and Plaksin S. Saturation of nonlinear optical absorption of metal-nanoparticle composites. J. Appl. Phys. 2008. 103. P. 114302.
https://doi.org/10.1063/1.2936833