Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 406-417 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.406


References

1.    Davydov A.S. Solitons in quasi-one-dimensional molecular structures. Uspekhi fizich. nauk. 1982. 138, No. 4. P. 603–643 (in Russian).
 
2.    Suponitsky K.Yu., Timofeeva T.V., Antipin M.Yu. Molecular and crystal design of nonlinear optical organic materials. Russ. Chem. Rev. 2006. 75, No. 6. P. 457–498.
https://doi.org/10.1070/RC2006v075n06ABEH003602
 
3.    Meyers F., Marder S.R., Perry J.W. Introduction to the nonlinear optical properties of organic materials, in: Chemistry of Advanced Materials: an Overview, L.V. Interrante and M.J. Hampden-Smith (eds.). Wiley, New York, 1998. P. 207–269.
 
4.    Kulinich A.V., Ishchenko A.A. Merocyanine dyes: Synthesis, structure, properties and applications. Russ. Chem. Rev. 2009. 78, No. 2. P. 141–145.
https://doi.org/10.1070/RC2009v078n02ABEH003900
 
5.    Daehne S. Color and constitution: One hundred years of research. Science. 1978. 199. P. 1163–1167.
https://doi.org/10.1126/science.199.4334.1163
 
6.    Meyers F., Marder S.R., Perry J.W., Bredas J.L. Electric field modulated nonlinear optical properties of donor-acceptor polyenes: Sum-over-states investigation of the relationship between molecular polarizabilities (α, β and γ) and bond length alternation. J. Amer. Chem. Soc. 1994. 116. P. 10703–10714.
https://doi.org/10.1021/ja00102a040
 
7.    Lemke R. Solvatochromie von 80 μm in verschiedenen Alkoholen bei Arylidenisophoron-Abkömmlingen. Chem. Ber. 1970. 103. P. 1894–1899.
https://doi.org/10.1002/cber.19701030628
 
8.    Lemke R. Knoevenagel condensation in dimethyl-formamide. Synthesis. 1974. 5. P. 359–361.
https://doi.org/10.1055/s-1974-23322
 
9.    Sevryukova M.M., Piryatinski Yu.P., Vasylyuk S.V., Yashchuk V.M., Viniychuk O.O., Gerasov A.O., Slominskii Yu.L., Kachkovsky O.D. Cyanine-like and polyenic relaxation paths of merocyanine derivatives of malonodinitrile in the excited state detecting by low temperature time-resolved fluorescence. Ukr. J. Phys. 2012. 57, No. 8. P. 812–823.
 
10.    Mataga N. Properties of molecular complexes in the excited electron states, in: Molecular Interactions, Ed. by H. Ratajczak and W.J. Orville-Thomas, Vol. 2. Wiley, New York, 1980.
 
11.    Silinsh E.A., Kurik M.V., Chapek V. Electron Processes in Organic Molecular Crystals. Phenomena of Localization and Polarization. Riga, Zinatne, 1988 (in Russian).
 
12.    Forster T. Delocalized excitation and excitation transfer. In: Modern Quantum Chemistry, O. Sinaoglu (ed.), Vol. 3. Academic Press, New York, 1965. P. 93-137.
 
13.    Dewar M.J.S. The Molecular Orbital Theory of Organic Chemistry. McGraw-Hill, New York, 1969.
 
14.    Hunt G.R., McCoy E.F., Ross I.J. Excited states of aromatic hydrocarbons: Pathways of internal conversion. Austral. J. Chem. 1962. 15, No. 4. P. 591–604.
https://doi.org/10.1071/CH9620591
 
15.    Ishchenko A.A. Laser media based on polymethine dyes. Quantum Electronics. 1994. 24, No. 6. P. 471–493.
https://doi.org/10.1070/QE1994v024n06ABEH000122
 
16.    Kachkovskii A.D. The nature of electronic transitions in linear conjugated systems. Russ. Chem. Rev. 1997. 66, No. 8. P. 647–664.
https://doi.org/10.1070/RC1997v066n08ABEH000274
 
17.    Lacowicz J.R. Principles of Fluorescence Spectroscopy. Plenum, New York, 1983.
https://doi.org/10.1007/978-1-4615-7658-7
 
18.    Chemla D.S. and Zyss J. (Eds.) Nonlinear Optical Properties of Organic Molecules and Crystals. Academic Press, Inc., 1987. 1. 385 p.
 
19.    Leonhardt H., Weller A. Elektronenübertragungs reaktionen des angeregten Perylens. Ber. Bunsen-Ges. Phys. Chem. 1963. 67. P. 791–795.
https://doi.org/10.1002/bbpc.19630670810
 
20.    Walker M., Bodnar T., Lumry R., Exciplex formation in the excited state of indole. J. Chem. Phys. 1966. 45, No. 9. P. 3455–3457.
https://doi.org/10.1063/1.1728133
 
21.    Piryatinski Yu., Yaroshchuk O. Photoluminescence of n-pentyl-n′-cyanobiphenyl in liquid crystalline and solid crystal state. Optics and Spectroscopy. 2000. 89, No. 6. P. 937–943 (in Russian).
https://doi.org/10.1134/1.1335034
 
22.    Shen Y.R. The Principles of Nonlinear Optics. New York, John Wiley & Sons, Inc., 1984.
 
23.    Bredikhin V.I., Galanin M.D., Genkin V.N. Two-photon absorption and spectroscopy. Uspekhi fizich. nauk. 1973. 110. P. 1–43 (in Russian).
 
24.    Pantell P.H., Puthoff H.E. Fundamentals of Quantum Electronics. New York, John Wiley & Sons, Inc., 1969.
 
25.    Piryatinski A., Deck R. Excimer states and enhanced two-photon absorption in intramolecular charge-transfer crystals. Chem. Phys. Lett. 1997. 269. P. 156–160.
https://doi.org/10.1016/S0009-2614(97)00264-9
 
26.    Abe S. Two-photon probe of forbidden exciton states in symmetric aggregates of asymmetric molecules. Chem. Phys. 2001. 264. P. 355–363.
https://doi.org/10.1016/S0301-0104(01)00258-0
 
27.    Yaltychenko O.V., Kanarovskii Yu. The electron transfer in the donor-polymer-acceptor molecular complex. Surf. Eng. and Appl. Electrochem. 2008. 44, No. 6. P. 477–479.
https://doi.org/10.3103/S1068375508060082
 
28.    Lutsyk P., Piryatinski Yu., Kachkovsky O., Verbitsky A., and Rozhin A. Unsymmetrical relaxation paths of the excited states in cyanine dyes detected by time-resolved fluorescence: Polymethinic and polyenic forms. J. Phys. Chem. A. 2017. 121, No. 43. P. 8236–8246.
https://doi.org/10.1021/acs.jpca.7b08680