Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 418-423 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.418


References

1.    Thompson B.C., Frèchet J.M.J. Polymer–fullerene composite solar cells. Angew. Chem. Intl. Ed. 2008. 47. P. 58–77.
https://doi.org/10.1002/anie.200702506
 
2.    Shaheen S.E., Brabec C.J., Sariciftci N.S. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 2001. 78. P. 841.
https://doi.org/10.1063/1.1345834
 
3.    Jorgensen M., Norrman K. and Krebs F.C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells. 2008. 92. P. 686–714.
https://doi.org/10.1016/j.solmat.2008.01.005
 
4.    Uchida S., Xue J., Rand B.P., Forrest S.R. Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Appl. Phys. Lett. 2004. 84. P. 4218.
https://doi.org/10.1063/1.1755833
 
5.    Sullivan P., Heutz S., Schultes S.M., Jones T.S. Influence of codeposition on the performance of CuPc–C60 heterojunction photovoltaic devices. Appl. Phys. Lett. 2004. 84. P. 1210.
https://doi.org/10.1063/1.1643549
 
6.    Milleron D.J., Gur I., and Alivisatos A.P. Hybrid organic–nanocrystal solar cells. MRS Bulletin. 2005. 30. P. 41–44.
https://doi.org/10.1557/mrs2005.8
 
7.    Boucle J., Ravirajan P., Nelson J. Hybrid polymer–me¬tal oxide thin films for photovoltaic appli-cations. J. Mater. Chem. 2007. 17. P. 3141–3153.
https://doi.org/10.1039/b706547g
 
8.    O'Regan B., Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991. 353. P. 737–740.
https://doi.org/10.1038/353737a0
 
9.    Graetzel M. Dye-sensitized solar cells. J. Photochem. Photobiol. C. 2003. 4. P. 145–153.
https://doi.org/10.1016/S1389-5567(03)00026-1
 
10.    Gur I., Fromer N.A., Geier M.L., Alivisatos A.P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science. 2005. 310. P. 462–465.
https://doi.org/10.1126/science.1117908
 
11.    Mitzi D.B., Gunawan O., Todorov T.K., Wang K., Guha S. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells. 2011. 95. P. 1421–1436.
https://doi.org/10.1016/j.solmat.2010.11.028
 
12.    Persson C. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 2010. 107. P. 053710.
https://doi.org/10.1063/1.3318468
 
13.    Wang W., Winkler M.T., Gunawan O., Gokmen T., Todorov T.K., Zhu Y., Mitzi D.B. Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv. Energy Mater. 2014. 4. P. 1301465.
https://doi.org/10.1002/aenm.201301465
 
14.    Wang Y., Gong H. Cu2ZnSnS4 synthesized through a green and economic process. J. Alloys Compd. 2011. 509. P. 9627–9630.
https://doi.org/10.1016/j.jallcom.2011.07.041
 
15.    Pareek D., Balasubramaniam K.R., Sharma P. Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J. Mater. Sci. Mater. Electron. 2017. 28. P. 1199–1210.
https://doi.org/10.1007/s10854-016-5646-3
 
16.    Ritscher A., Schlosser M., Pfitzner A., Lerch M. Study of the mechanochemical process to crystalline Cu2ZnSnS4 powder. Mater. Res. Bull. 2016. 84. P. 162–167.
https://doi.org/10.1016/j.materresbull.2016.08.006
 
17.    Nonnenmacher M., O'Boyle M.P., Wickramasinghe H.K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921-2923 (1991).
https://doi.org/10.1063/1.105227
 
18.    Teichert C., Beinik I. Conductive atomic force microscopy investigation of nanostructures in microelectronics, in: Scanning Probe Microscopy in Nanoscience and Nanotechnology, Vol. 2, ed. by B. Bhushan. Springer-Verlag, Berlin, 2011, P. 691–721.
https://doi.org/10.1007/978-3-642-10497-8_23
 
19.    http://www.webmineral.com/data/Kesterite.shtml