Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 430-436 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.430


References

1.    Pekar S.I. Research in Electron Theory of Crystals. Moscow, Publ. House Gostekhizdat, 1951 (in Russian).
 
2.    Dykman M.I. and Rashba E.I. The roots of polaron theory. Physics Today. 2015. 68, No. 4. P. 10.
https://doi.org/10.1063/PT.3.2735
 
3.    Alexandrov A.S., Devreese J.T. Advances in Polaron Physics. Springer, 2010.
https://doi.org/10.1007/978-3-642-01896-1
 
4.    Appel J. Polarons. In: Polarons. Part I. Ed. by A.Yu. Firsov. Moscow, Nauka, 1975.
 
5.    Feynman R.P. Slow electrons in a polar crystal. Phys. Rev. 1955. 97, No. 3. P. 660–665.
https://doi.org/10.1103/PhysRev.97.660
 
6.    Gross E.P. Small oscillation theory of the interaction of a particle and scalar field. Phys. Rev. 1955. 100, No. 6. P. 1571–1578.
https://doi.org/10.1103/PhysRev.100.1571
 
7.    Tulub A.V. Accounting the recoil in nonrelativistic quantum field theory. Vestnik Leningrad. gos. universiteta. Ser. 4. Fizika, Khimiya. 1960. 15, No. 22. P. 104–118 (in Russian).
 
8.    Tulub A.V. Slow electrons in polar crystals. JETP. 1962. 14, No. 6. P. 1301–1307.
 
9.    Lee T.D., Low F.E. and Pines D. The motion of slow electrons in a polar crystal. Phys. Rev. 1953. 90, No. 2. P. 297–302.
https://doi.org/10.1103/PhysRev.90.297
 
10.    Tulub A.V. Comments on polaron-phonon scattering theory. Theoretical and Mathematical Physics. 2015. 185, No. 1. P. 1533–1546.
https://doi.org/10.1007/s11232-015-0363-2
 
11.    Lakhno V.D. Energy and critical ionic-bond parameter of a 3D large-radius bipolaron. JETF. 2010. 110, No. 5. P. 811–815.
https://doi.org/10.1134/S1063776110050122
 
12.    Lakhno V.D. Translation-invariant bipolarons and the problem of high-temperature superconductivity. Solid State Communs. 2012. 152, No. 7. P. 621–623.
https://doi.org/10.1016/j.ssc.2012.01.013
 
13.    Klimin S.N., Devreese J.T. Comments on "Translation-invariant bipolarons and the problem of high-temperature superconductivity". Solid State Communs. 2012. 152, No. 16. P. 1601–1603.
https://doi.org/10.1016/j.ssc.2012.05.013
 
14.    Lakhno V.D. On the cutoff parameter in the translation-invariant theory of the strong coupling polaron. Solid State Communs. 2012. 152, No. 19. P. 1855-1856.
https://doi.org/10.1016/j.ssc.2012.07.019
 
15.    Klimin S.N., Devreese J.T. Reply to "On the cutoff parameter in the translation-invariant theory of the strong coupling polaron". Solid State Communs. 2013. 153, No. 1. P. 58–59.
https://doi.org/10.1016/j.ssc.2012.10.012
 
16.    V.D. Lakhno, Pekar's ansatz and the strong coupling problem in polaron theory. Physics-Uspekhi. 2015. 58, No. 3. P. 295–308.
https://doi.org/10.3367/UFNe.0185.201503d.0317
 
17.    N.I. Kashirina, Gross-Tulub polaron functional in the region of intermediate and strong coupling. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2017. 20, No. 3. P. 319-324.
https://doi.org/10.15407/spqeo20.03.319
 
18.    Buimistrov V.M., Pekar S.I. The quantum states of particles coupled with arbitrary strength to a harmonically oscillating continuum. II. The case of translational symmetry. JETP. 1958. 6, No. 5. P. 977–980.
 
19.    Kashirina N.I., Lakhno V.D., Tulub A.V. The virial theorem and the ground state problem in polaron theory. JETP. 2012. 114, No. 5. P. 867–869.
https://doi.org/10.1134/S1063776112030065
 
20.    Miyake S.J. Strong-coupling limit of the polaron ground state. J. Phys. Soc. Jpn. 1975. 38, No. 1. P. 181–182.
https://doi.org/10.1143/JPSJ.38.181
 
21.    Lemmens L.F., Devreese J.T. The 1:2:3:4 theorem and the ground state of free polarons. Solid State Communs. 1973. 12, No. 10. P. 1067–1069.
https://doi.org/10.1016/0038-1098(73)90038-0