Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4),
P. 430-436 (2017). References 1. Pekar S.I. Research in Electron Theory of Crystals. Moscow, Publ. House Gostekhizdat, 1951 (in Russian).2. Dykman M.I. and Rashba E.I. The roots of polaron theory. Physics Today. 2015. 68, No. 4. P. 10. https://doi.org/10.1063/PT.3.2735 3. Alexandrov A.S., Devreese J.T. Advances in Polaron Physics. Springer, 2010. https://doi.org/10.1007/978-3-642-01896-1 4. Appel J. Polarons. In: Polarons. Part I. Ed. by A.Yu. Firsov. Moscow, Nauka, 1975. 5. Feynman R.P. Slow electrons in a polar crystal. Phys. Rev. 1955. 97, No. 3. P. 660–665. https://doi.org/10.1103/PhysRev.97.660 6. Gross E.P. Small oscillation theory of the interaction of a particle and scalar field. Phys. Rev. 1955. 100, No. 6. P. 1571–1578. https://doi.org/10.1103/PhysRev.100.1571 7. Tulub A.V. Accounting the recoil in nonrelativistic quantum field theory. Vestnik Leningrad. gos. universiteta. Ser. 4. Fizika, Khimiya. 1960. 15, No. 22. P. 104–118 (in Russian). 8. Tulub A.V. Slow electrons in polar crystals. JETP. 1962. 14, No. 6. P. 1301–1307. 9. Lee T.D., Low F.E. and Pines D. The motion of slow electrons in a polar crystal. Phys. Rev. 1953. 90, No. 2. P. 297–302. https://doi.org/10.1103/PhysRev.90.297 10. Tulub A.V. Comments on polaron-phonon scattering theory. Theoretical and Mathematical Physics. 2015. 185, No. 1. P. 1533–1546. https://doi.org/10.1007/s11232-015-0363-2 11. Lakhno V.D. Energy and critical ionic-bond parameter of a 3D large-radius bipolaron. JETF. 2010. 110, No. 5. P. 811–815. https://doi.org/10.1134/S1063776110050122 12. Lakhno V.D. Translation-invariant bipolarons and the problem of high-temperature superconductivity. Solid State Communs. 2012. 152, No. 7. P. 621–623. https://doi.org/10.1016/j.ssc.2012.01.013 13. Klimin S.N., Devreese J.T. Comments on "Translation-invariant bipolarons and the problem of high-temperature superconductivity". Solid State Communs. 2012. 152, No. 16. P. 1601–1603. https://doi.org/10.1016/j.ssc.2012.05.013 14. Lakhno V.D. On the cutoff parameter in the translation-invariant theory of the strong coupling polaron. Solid State Communs. 2012. 152, No. 19. P. 1855-1856. https://doi.org/10.1016/j.ssc.2012.07.019 15. Klimin S.N., Devreese J.T. Reply to "On the cutoff parameter in the translation-invariant theory of the strong coupling polaron". Solid State Communs. 2013. 153, No. 1. P. 58–59. https://doi.org/10.1016/j.ssc.2012.10.012 16. V.D. Lakhno, Pekar's ansatz and the strong coupling problem in polaron theory. Physics-Uspekhi. 2015. 58, No. 3. P. 295–308. https://doi.org/10.3367/UFNe.0185.201503d.0317 17. N.I. Kashirina, Gross-Tulub polaron functional in the region of intermediate and strong coupling. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2017. 20, No. 3. P. 319-324. https://doi.org/10.15407/spqeo20.03.319 18. Buimistrov V.M., Pekar S.I. The quantum states of particles coupled with arbitrary strength to a harmonically oscillating continuum. II. The case of translational symmetry. JETP. 1958. 6, No. 5. P. 977–980. 19. Kashirina N.I., Lakhno V.D., Tulub A.V. The virial theorem and the ground state problem in polaron theory. JETP. 2012. 114, No. 5. P. 867–869. https://doi.org/10.1134/S1063776112030065 20. Miyake S.J. Strong-coupling limit of the polaron ground state. J. Phys. Soc. Jpn. 1975. 38, No. 1. P. 181–182. https://doi.org/10.1143/JPSJ.38.181 21. Lemmens L.F., Devreese J.T. The 1:2:3:4 theorem and the ground state of free polarons. Solid State Communs. 1973. 12, No. 10. P. 1067–1069. https://doi.org/10.1016/0038-1098(73)90038-0 |