Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 437-441 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.437


References

1.    Basu R., Garvey A. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl. Phys. Lett. 2014. 105. P.151905.
https://doi.org/10.1063/1.4898581
 
2.    Kurochkin O., Buchnev O., Iljin A. et al. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A: Pure Appl. Opt. 2009. 11. P. 024003.
https://doi.org/10.1088/1464-4258/11/2/024003
 
3.    Kaczmarek M., Buchnev O., and Nandhakumar I. Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response. Appl. Phys. Lett. 2008. 92. P. 103307.
https://doi.org/10.1063/1.2884186
 
4.    Basu R. Soft memory in a ferroelectric nanoparticle-doped liquid crystal. Phys. Rev. E. 2014. 89. P. 022508.
https://doi.org/10.1103/PhysRevE.89.022508
 
5.    Blach J.-F., Saitzek S., Legrand C. et al. BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization. J. Appl. Phys. 2010. 107. P. 074102.
https://doi.org/10.1063/1.3369544
 
6.    Paul S.N., Dhar R., Verma R. et al. Change in electric and electro-optical properties of a nematic material (6CHBT) due to the dispersion of BaTiO3 nanoparticles. Mol. Cryst. Liquid Cryst. 2011. 545. P. 105-111.
 
7.    Podoliak N., Buchnev O., Herrington M. et al. Elastic constants, viscosity and response time in ne¬ma¬tic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 2014. 4. P. 46068-46074.
https://doi.org/10.1039/C4RA06248E
 
8.    Lopatina L.M., Selinger J.V. Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. E. 2011. 84. P. 041703.
https://doi.org/10.1103/PhysRevE.84.041703
 
9.    Kuhs W.F., Nitsche R., Scheunemann K. Vapour growth and lattice data of new compounds with ico¬¬¬sahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I). Mater. Res. Bull. 1976. 11. P. 1115-1124.
https://doi.org/10.1016/0025-5408(76)90010-6
 
10.    Beeken R.B., Garbe J.J., Petersen N.R. Cation mobility in the Cu6PS5X (X = Cl, Br, I) argyrodites. J. Phys. Chem. Solids. 2003. 64. P. 1261-1264.
https://doi.org/10.1016/S0022-3697(03)00086-6
 
11.    Studenyak I.P., Demko P.Yu., Bendak A.V. et al. Influence of superionic nanoparticles Cu6PS5I on dielectric properties of nematic liquid crystal 6CHBT. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18, No. 2. P. 205-208.
https://doi.org/10.15407/spqeo18.02.205
 
12.    Studenyak I.P., Izai V.Y., Studenyak V.I. et al. Influence of Cu6PS5I superionic nanoparticles on the dielectric properties of 6CB liquid crystal. Liquid Crystals. 2017. 44, No. 5. P. 897-903.
https://doi.org/10.1080/02678292.2016.1254288
 
13.    Abderrahmen A., Romdhane F. Fekih, Ouada H.B., Gharbi A. Investigation of the liquid crystal alignment layer: effect on electrical properties. Sci. Technol. Adv. Mater. 2008. 9. 025001 (5 pp).
 
14.    Vardanyan K.K., Sita D.M., Walton R.D., Saidel W.M. and Jones K.M. Cyanobiphenyl liquid crystal composites with gold nanoparticles. RSC Adv. 2013. 3. P. 259-273.
https://doi.org/10.1039/C2RA21220J
 
15.    Tomasovicova N., Koneracka M., Kopcansky P., Timko M., Zavisova V., Tomco L. and Jadzyn J. The structural phase transitions in 6CB-based ferronematics. Acta Physica Polonica A. 2009. 115, No. 1, P. 336-338.
https://doi.org/10.12693/APhysPolA.115.336
 
16.    Twarowski A.J., Albrecht A.C. Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70. P. 2255.
https://doi.org/10.1063/1.437729
 
17.    Yaroshchuk O., Kovalchuk A., Kravchuk R. The interfacial dipole-to-dipole interaction as a factor of polar anchoring in the cells with planar liquid crystal alignment. Mol. Cryst. Liquid Cryst. 2005. 438. P. 195-204.
https://doi.org/10.1080/15421400590958151
 
18.    Haase W., Wrobel S. (eds.) Relaxation Phenomena: Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors, Metallic Glasses. Springer, 2003, 359 p.
https://doi.org/10.1007/978-3-662-09747-2
 
19.    Koval'chuk A.V. Low and infra-low dielectric spectroscopy liquid crystal-solid state interface. Sliding layers. Ukr. J. Phys. 1996. 41, No. 10. P. 991-998.
 
20.    Tomylko S., Yaroshchuk O., Kovalchuk O., Maschke U., and Yamaguchi R. Dielectric and electro-optical properties of liquid crystals doped with diamond nanoparticles. Mol. Cryst. Liquid Cryst. 2011. 541. P. 35[273]–43[281].