Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 442-446 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.442


References

1.    Iga K. Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 2008. 47, No. 1R. P. 1–10.
https://doi.org/10.1143/JJAP.47.1
 
2.    Malacarne A., Sorianello V., Daly A., Kögel B., Ortsiefer M., Neumeyr C., Romagnoli M. and Bogoni A. Performance analysis of 40-Gb/s transmission based on directly modulated high-speed 1530-nm VCSEL. IEEE Photon. Technol. Lett. 2016. 28, No. 16. P. 1735–1738.
https://doi.org/10.1109/LPT.2016.2559784
 
3.    Koyama F. VCSEL integration for silicon photonics. Proc. 3rd IEEE Int. Conf. Group IV Photon. 2006. P. 194–196.
https://doi.org/10.1109/GROUP4.2006.1708210
 
4.    Aalto T., Harjanne M., Ylinen et al. Multi-wavelength transceiver integration on SOI for high-performance computing system applications. Proc. SPIE. 2015. 9368. 93680B-1(10 p.).
 
5. Kuchta D.M., Schow C.L., Rylyakov A.V. et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon. Technol. Lett. 2015. 27, No. 6. P. 577–580.
https://doi.org/10.1109/LPT.2014.2385671
 
6. Al-Qazwini Z., Zhou J., and Kim H. 1.5-μm 10-Gb/s VCSEL link for optical access applications. IEEE Photon. Technol. Lett. 2013. 25, No. 22. P. 2160–2163.
https://doi.org/10.1109/LPT.2013.2282361
 
7. Hamad W., Wanckel S. and Hofmann W. Small-signal analysis of ultra-high-speed multi-mode VCSELs. IEEE J. Quantum Electron. 2016. 52, No. 7. 2400311 (11 p.).
 
8. Raj M., Monge M., and Emami A. A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS. IEEE J. Solid-State Circuits. 2016. 51, No. 8. P. 1734–1743.
https://doi.org/10.1109/JSSC.2016.2553040
 
9. Hofmann W. and Bimberg D. VCSEL-based light sources – scalability challenges for VCSEL-based multi-100-Gb/s systems. IEEE Photon. J. 2012. 4, No. 5. P. 1831–1843.
https://doi.org/10.1109/JPHOT.2012.2218588
 
10. Mishra R., Saxena R., and Jain R. Application of FRFT convolution theorem in filtering. Intern. J. Information Eng. 2013. 3. P. 71–75.
 
11. Barnes C.E. and Wiczer J.J. Radiation effects in optoelectronic devices. Sandia National Lab., SAND-84-0771, 1984.
https://doi.org/10.2172/6897149
 
12. Johnston A. Radiation effects in optoelectronic devices. IEEE Trans. Nucl. Sci. 2013. 60, No. 3. P. 2054–2073.
https://doi.org/10.1109/TNS.2013.2259504