Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4),
P. 458-464 (2017). References 1. Chance R.R., Prock A., and Silbey R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 1978. 37. P. 165.https://doi.org/10.1002/9780470142561.ch1 2. Ford G.W. and Weber W.H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 1984. 113. P. 195287. https://doi.org/10.1016/0370-1573(84)90098-X 3. Drexhage K.H. Influence of a dielectric interface on fluorescence decay. J. Lumin. 1970. 1, 2. P. 693701. 4. Cnossen G., Drabe K.E. and Wiersma D.A. Fluorescence properties of submonolayers of rhodamine 6G in front of a mirror. J. Chem. Phys. 1993. 98. P. 52765280. https://doi.org/10.1063/1.464927 5. Pipa V.I. Electromagnetic field quantization in planar absorbing heterostructures. SPQEO. 2011. 14. P. 9197. 6. Ruppin R. Decay of an excited molecule near a small metal sphere. J. Chem Phys. 1982. 76. P. 16811684. https://doi.org/10.1063/1.443196 7. Chew H. Transition rates of atoms near spherical surfaces. J. Chem. Phys. 1987. 87. P. 13551360. https://doi.org/10.1063/1.453317 8. Dung H.T., Knoll L., and Welsch D.-G. Decay of an excited atom near an absorbing microsphere. Phys. Rev. A. 2001. 64. P. 013804. https://doi.org/10.1103/PhysRevA.64.013804 9. Vielma J. and Leung P.T. Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle. J. Chem. Phys. 2007. 126. P. 194704. https://doi.org/10.1063/1.2734549 10. Leung P.T. Decay of molecules at spherical surfaces: Nonlocal effects. Phys. Rev. B. 1990. 42. P. 76227625. https://doi.org/10.1103/PhysRevB.42.7622 11. Castanie E., Boffety M., and Carminati R. Fluorescence quenching by a metal nanoparticle in the extreme near-field regime. Opt. Lett. 2010. 35. P. 291293. https://doi.org/10.1364/OL.35.000291 12. Ruppin R. Optical properties of small spheres. Phys. Rev. B. 1975. 11. P. 28712876. https://doi.org/10.1103/PhysRevB.11.2871 13. Trugler A. and Hohenester U. Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B. 2008. 77. P. 115403. https://doi.org/10.1103/PhysRevB.77.115403 14. Van Vlack C., Kristensen P.T., and Hughes S. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system. Phys. Rev. B. 2012. 85. P. 075303. https://doi.org/10.1103/PhysRevB.85.075303 15. Savasta S., Saija R., Ridolfo A., Di Stefano O., Denti P., and Borghese F. Nanopolaritons: Vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano. 2010. 4. P. 63696376. https://doi.org/10.1021/nn100585h 16. Dvoynenko M.M. and Wang J.-K. Revisiting strong coupling between a single molecule and surface plasmons. Opt. Lett. 2013. 38. P. 760762. https://doi.org/10.1364/OL.38.000760 17. Childs J.J., An K., Dasari R.R., and Feld M.S. Single atom emission in an optical resonator, Chap. 8 in: Cavity Quantum Electrodynamics, ed. P.R. Barman, pp. 325-379, Academic Press, Boston, 1994. 18. Hinds E.A. Perturbative Cavity Electrodynamics, Chap. 1 in: Cavity Quantum Electrodynamics, ed. P.R. Berman. Academic Press, Boston, 1994. P. 156. 19. Feynman R., Leighton R. and Sachs M. The Feynman Lectures on Physics, vol. I. Addison-Wesley, 1977. P. 32-1. 20. Dvoynenko M.M. and Wang J.-K. Can electro-dynamic interaction between amolecule and metal dominate a continuum background in sur¬face-enhanced Raman scattering? Phys. Chem. Chem. Phys. 2015. 17. P. 2725827263. https://doi.org/10.1039/C5CP04633E 21. Cnossen G., Drabe K.E., and Wiersma D.A. Fluorescence properties of submonolayers of rhodamine 6Gin front of a mirror. J. Chem. Phys. 1993. 98. P. 52765280. https://doi.org/10.1063/1.464927 22. Johansson P., Xu H. and Käll M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys. Rev. B. 2005. 72. P. 035427. https://doi.org/10.1103/PhysRevB.72.035427 23. Dvoynenko M.M. and Wang J.-K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. Opt. Lett. 2007. 32. P. 35523554. https://doi.org/10.1364/OL.32.003552 24. Galloway C.M., Etchegoin P.G. and Le Ru E.C. Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules. Phys. Rev. Lett. 2009. 103. P. 063003. https://doi.org/10.1103/PhysRevLett.103.063003 25. Dvoynenko M.M., Kazantseva Z.I., Strelchuk V.V., Kolomys O.F., Venger E.F. and Wang J.-K. Molecular ruler based on concurrent measurements of enhanced Raman scattering and fluorescence. Opt. Lett. 2010. 35. P. 38083810. https://doi.org/10.1364/OL.35.003808 26. Dvoynenko M.M., Kazantseva Z.I., Strelchuk V.V., Kolomys O.F., Bortshagovsky E.G., Venger E.F., Tronc P. Probing plasmonic system by the simultaneous measurement of Raman and fluorescence signals of dye molecules. SPQEO. 2011. 14. P. 195199. 27. Li L.-W., Kooi P.-S., Leong M.-S., Yee T.-S. Electromagnetic dyadic Green's function in spherically multilayered media. IEEE Trans. Microwave. 1994. 42. P. 23022310. https://doi.org/10.1109/22.339756 28. Kim Y.S., Leung P.T. and George T.F. Classical decay rates for molecules in the presence of a spherical surface: a complete treatment. Surf. Sci. 1988. 195. P. 114. https://doi.org/10.1016/0039-6028(88)90776-5 29. Ruppin R. Optical properties of a plasma sphere. Phys. Rev. Lett. 1973. 31. P. 14341437. https://doi.org/10.1103/PhysRevLett.31.1434 30. Datsyuk V.V. A generalization of the Mie theory for a sphere with spatially dispersive permittivity. Ukr. J. Phys. 2011. 56. P. 122129. 31. Christensen T., Yan W., Raza S., Jauho A.-P., Mortensen N.A., and Wubs M. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano. 2014. 8. P. 17451758. https://doi.org/10.1021/nn406153k 32. Yang H.U., D'Archangel J., Sundheimer M.L., Tucker E., Boreman G.D., and Raschke M.B. Optical dielectric function of silver. Phys. Rev. B. 2015. 91. P. 235137. https://doi.org/10.1103/PhysRevB.91.235137 33. Colas des Francs G., Bouhelier A., Finot E., Weeber J.C., Dereux A., Girard C. and Dujardin E. Fluorescence relaxation in the nearfield of a mesoscopic metallic particle: distance dependence and role of plasmon modes. Opt. Exp. 2008. 16. P. 1765417666. https://doi.org/10.1364/OE.16.017654 34. Stockman M.I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Exp. 2011. 19. P. 2202922106. https://doi.org/10.1364/OE.19.022029 35. Dvoynenko M.M. and Wang J.-K. Rabi splitting at intersubband transition assisted by longitudinal optical phonon. Phys. Rev. B. 2007. 75. P. 245315. https://doi.org/10.1103/PhysRevB.75.245315 36. Zhu W., Esteban R., Borisov A.G., Baumberg J.J., Nordlander P., Lezec H.J., Airpurua J. and Grozier K.B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016. 7. P. 11495. https://doi.org/10.1038/ncomms11495 37. Klimov V. Nanoplasmonics. CRC Press, Boca Raton, 2013. 38. C. David and F.J. García de Abajo, Spatial Nonlocality in the Optical Response of Metal Nanoparticles. J. Phys. Chem. C 115, pp. 1947019475 (2011). https://doi.org/10.1021/jp204261u 39. Fox M. Quantum Optics. An Introduction. Oxford University Press, Oxford, 2006. 40. Chikkaraddy R., de Nijs B., Benz F., Barrow S.J., Scherman O.A., Rosta E., Demetriadou A., Fox P., Hess O. and Baumberg J.J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016. 535. P. 127130. https://doi.org/10.1038/nature17974 |