Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 458-464 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.458


References

1.    Chance R.R., Prock A., and Silbey R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 1978. 37. P. 1–65.
https://doi.org/10.1002/9780470142561.ch1
 
2.    Ford G.W. and Weber W.H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 1984. 113. P. 195–287.
https://doi.org/10.1016/0370-1573(84)90098-X
 
3.    Drexhage K.H. Influence of a dielectric interface on fluorescence decay. J. Lumin. 1970. 1, 2. P. 693–701.
 
4.    Cnossen G., Drabe K.E. and Wiersma D.A. Fluorescence properties of submonolayers of rhodamine 6G in front of a mirror. J. Chem. Phys. 1993. 98. P. 5276–5280.
https://doi.org/10.1063/1.464927
 
5.    Pipa V.I. Electromagnetic field quantization in planar absorbing heterostructures. SPQEO. 2011. 14. P. 91–97.
 
6.    Ruppin R. Decay of an excited molecule near a small metal sphere. J. Chem Phys. 1982. 76. P. 1681–1684.
https://doi.org/10.1063/1.443196
 
7.    Chew H. Transition rates of atoms near spherical surfaces. J. Chem. Phys. 1987. 87. P. 1355–1360.
https://doi.org/10.1063/1.453317
 
8.    Dung H.T., Knoll L., and Welsch D.-G. Decay of an excited atom near an absorbing microsphere. Phys. Rev. A. 2001. 64. P. 013804.
https://doi.org/10.1103/PhysRevA.64.013804
 
9.    Vielma J. and Leung P.T. Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle. J. Chem. Phys. 2007. 126. P. 194704.
https://doi.org/10.1063/1.2734549
 
10.    Leung P.T. Decay of molecules at spherical surfaces: Nonlocal effects. Phys. Rev. B. 1990. 42. P. 7622–7625.
https://doi.org/10.1103/PhysRevB.42.7622
 
11.    Castanie E., Boffety M., and Carminati R. Fluorescence quenching by a metal nanoparticle in the extreme near-field regime. Opt. Lett. 2010. 35. P. 291–293.
https://doi.org/10.1364/OL.35.000291
 
12.    Ruppin R. Optical properties of small spheres. Phys. Rev. B. 1975. 11. P. 2871–2876.
https://doi.org/10.1103/PhysRevB.11.2871
 
13.    Trugler A. and Hohenester U. Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B. 2008. 77. P. 115403.
https://doi.org/10.1103/PhysRevB.77.115403
 
14.    Van Vlack C., Kristensen P.T., and Hughes S. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system. Phys. Rev. B. 2012. 85. P. 075303.
https://doi.org/10.1103/PhysRevB.85.075303
 
15.    Savasta S., Saija R., Ridolfo A., Di Stefano O., Denti P., and Borghese F. Nanopolaritons: Vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano. 2010. 4. P. 6369–6376.
https://doi.org/10.1021/nn100585h
 
16.    Dvoynenko M.M. and Wang J.-K. Revisiting strong coupling between a single molecule and surface plasmons. Opt. Lett. 2013. 38. P. 760–762.
https://doi.org/10.1364/OL.38.000760
 
17.    Childs J.J., An K., Dasari R.R., and Feld M.S. Single atom emission in an optical resonator, Chap. 8 in: Cavity Quantum Electrodynamics, ed. P.R. Barman, pp. 325-379, Academic Press, Boston, 1994.
 
18.    Hinds E.A. Perturbative Cavity Electrodynamics, Chap. 1 in: Cavity Quantum Electrodynamics, ed. P.R. Berman. Academic Press, Boston, 1994. P. 1–56.
 
19.    Feynman R., Leighton R. and Sachs M. The Feynman Lectures on Physics, vol. I. Addison-Wesley, 1977. P. 32-1.
 
20.    Dvoynenko M.M. and Wang J.-K. Can electro-dynamic interaction between amolecule and metal dominate a continuum background in sur¬face-enhanced Raman scattering? Phys. Chem. Chem. Phys. 2015. 17. P. 27258–27263.
https://doi.org/10.1039/C5CP04633E
 
21.    Cnossen G., Drabe K.E., and Wiersma D.A. Fluorescence properties of submonolayers of rhodamine 6Gin front of a mirror. J. Chem. Phys. 1993. 98. P. 5276–5280.
https://doi.org/10.1063/1.464927
 
22.    Johansson P., Xu H. and Käll M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys. Rev. B. 2005. 72. P. 035427.
https://doi.org/10.1103/PhysRevB.72.035427
 
23.    Dvoynenko M.M. and Wang J.-K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. Opt. Lett. 2007. 32. P. 3552–3554.
https://doi.org/10.1364/OL.32.003552
 
24.    Galloway C.M., Etchegoin P.G. and Le Ru E.C. Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules. Phys. Rev. Lett. 2009. 103. P. 063003.
https://doi.org/10.1103/PhysRevLett.103.063003
 
25.    Dvoynenko M.M., Kazantseva Z.I., Strelchuk V.V., Kolomys O.F., Venger E.F. and Wang J.-K. Molecular ruler based on concurrent measurements of enhanced Raman scattering and fluorescence. Opt. Lett. 2010. 35. P. 3808–3810.
https://doi.org/10.1364/OL.35.003808
 
26.    Dvoynenko M.M., Kazantseva Z.I., Strelchuk V.V., Kolomys O.F., Bortshagovsky E.G., Venger E.F., Tronc P. Probing plasmonic system by the simultaneous measurement of Raman and fluorescence signals of dye molecules. SPQEO. 2011. 14. P. 195–199.
 
27.    Li L.-W., Kooi P.-S., Leong M.-S., Yee T.-S. Electromagnetic dyadic Green's function in spherically multilayered media. IEEE Trans. Microwave. 1994. 42. P. 2302–2310.
https://doi.org/10.1109/22.339756
 
28.    Kim Y.S., Leung P.T. and George T.F. Classical decay rates for molecules in the presence of a spherical surface: a complete treatment. Surf. Sci. 1988. 195. P. 1–14.
https://doi.org/10.1016/0039-6028(88)90776-5
 
29.    Ruppin R. Optical properties of a plasma sphere. Phys. Rev. Lett. 1973. 31. P. 1434–1437.
https://doi.org/10.1103/PhysRevLett.31.1434
 
30.    Datsyuk V.V. A generalization of the Mie theory for a sphere with spatially dispersive permittivity. Ukr. J. Phys. 2011. 56. P. 122–129.
 
31.    Christensen T., Yan W., Raza S., Jauho A.-P., Mortensen N.A., and Wubs M. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano. 2014. 8. P. 1745–1758.
https://doi.org/10.1021/nn406153k
 
32.    Yang H.U., D'Archangel J., Sundheimer M.L., Tucker E., Boreman G.D., and Raschke M.B. Optical dielectric function of silver. Phys. Rev. B. 2015. 91. P. 235137.
https://doi.org/10.1103/PhysRevB.91.235137
 
33.    Colas des Francs G., Bouhelier A., Finot E., Weeber J.C., Dereux A., Girard C. and Dujardin E. Fluorescence relaxation in the near–field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. Opt. Exp. 2008. 16. P. 17654–17666.
https://doi.org/10.1364/OE.16.017654
 
34.    Stockman M.I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Exp. 2011. 19. P. 22029–22106.
https://doi.org/10.1364/OE.19.022029
 
35.    Dvoynenko M.M. and Wang J.-K. Rabi splitting at intersubband transition assisted by longitudinal optical phonon. Phys. Rev. B. 2007. 75. P. 245315.
https://doi.org/10.1103/PhysRevB.75.245315
 
36.    Zhu W., Esteban R., Borisov A.G., Baumberg J.J., Nordlander P., Lezec H.J., Airpurua J. and Grozier K.B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016. 7. P. 11495.
https://doi.org/10.1038/ncomms11495
 
37.    Klimov V. Nanoplasmonics. CRC Press, Boca Raton, 2013.
 
38.    C. David and F.J. García de Abajo, Spatial Nonlocality in the Optical Response of Metal Nanoparticles. J. Phys. Chem. C 115, pp. 19470–19475 (2011).
https://doi.org/10.1021/jp204261u
 
39.    Fox M. Quantum Optics. An Introduction. Oxford University Press, Oxford, 2006.
 
40.    Chikkaraddy R., de Nijs B., Benz F., Barrow S.J., Scherman O.A., Rosta E., Demetriadou A., Fox P., Hess O. and Baumberg J.J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016. 535. P. 127–130.
https://doi.org/10.1038/nature17974