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Abstract. The properties of translationally invariant polaron functional have been 
investigated in the region of strong and extremely strong coupling. It has been shown that 
the Gross–Tulub polaron functional obtained earlier using the methods of field theory 
was derived only for the region 10≤α , where α  is the Fröhlich constant of the 
electron-phonon coupling. Various representations of exact and approximate polaron 
functionals have been considered. Asymptotic dependences of the polaron energy have 
been obtained using a functional extending the Gross–Tulub functional to the region of 
extremely strong coupling. The asymptotic dependence of polaron energies for an 
extremely strong coupling are 3431683.0 α−≈pE  (for the one-parameter variational 

function fk), and 3431767.0 α−≈pE  (for a two-parameter function kf ′ ). It has been 

shown that the virial theorem 1:3:4 holds for the two-parameter function kf ′ . 
Minimization of the approximate functional obtained by expanding the exact Gross–
Tulub functional in a series on α1  leads to a quadratic dependence of the polaron 
energy. This approximation is justified for 8...5.7≈α . For a two-parameter function kf ′ , 

the corresponding dependence has the form 2125.0 α−≈pE . However, the use of 
approximate functionals, in contrast to the strict variational procedure, when the exact 
polaron functional varies, does not guarantee obtaining the upper limit for the polaron 
energy. 
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1. Introduction 

The basis of polaron theory was laid down by Pekar [1]. 
A brief historical note on origins of polaron physics is 
given by Dykman and Rashba [2]. The first works in this 
direction were devoted to a strong coupling polaron. 
Despite the fact that variation wave function of the 
strong-coupling polaron (Pekar polaron) does not 
possess translational invariance, the strong-coupling 
polaron energy, founded by the variational method, is 
the upper limit of the continual polaron energy. A con-

siderable amount of works was devoted to the 
presentation of methods of the intermediate coupling in 
the polaron theory, including reviews and monographs 
[3, 4]. Using the Feynman variational method [5], it was 
possible to find the lowest values of the polaron energy 
for the entire range of the electron-phonon coupling 
constant, with the exception of the region of extremely 
strong coupling, where the Pekar polaron energy was 
lower. The table of values of the polaron energy 
obtained by various variational methods is given in the 
monograph [4, p. 29]. 
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In the works of Gross and Tulub [6-8], the field 
theory method was used for finding the energy of the 
translationally invariant polaron. This approach 
generalized the method of the intermediate coupling 
proposed by Lee Lowe and Pines [9]. As was pointed 
out in [8, 10], for a continual polaron the region of 
existence is bounded on the electron-phonon coupling 
parameter by the values 8...5.7~α , where α  is the 
dimensionless Fröhlich constant given by: 
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0ε  and ∞ε  are static and high-frequency permittivities, 

respectively, 0
kω  is the energy of longitudinal optical 

phonons, 0l  – effective Bohr radius, *m – effective 
electron mass.  

The restriction of the phonon spectrum by the 
limiting wave vector km also leads to a constraint on the 
value of the electron-phonon interaction by the constant 

10...8~mα  [8, 10]. From this point of view, inves-
tigation of the asymptotic dependences of the polaron 
energy at ∞→α  is an important, but rather a 
mathematical, problem, since the region of crystal 
parameters for which 10>>α  lies beyond the 
boundaries of the existence of a real (physical) continual 
polaron. As shown in [11, 12], the Tulub polaron 
functional [8] can be used to find the functional of the 
translation-invariant bipolaron. The discussion material 
devoted to the consideration of the asymptotic 
dependences of the polaron and bipolaron energy, which 
were found by the Tulub method [8], is described in the 
works [12-16]. 

The simple form of the exact functional of 
translationally invariant polaron was found in [17]. That 
makes it possible to extend the region of admissible α  
values for the Gross–Tuloub polaron [6, 7] to the strong-
coupling region. This paper is devoted to investigation 
of the asymptotic dependence of the polaron energy in 
the region of the extremely strong coupling. The polaron 
energy is determined by minimizing the polaron 
functional obtained in [17].  

2. Exact and approximate functionals in the polaron 
theory 

Polaron functionals obtained using various theoretical 
methods can have a rather complex form. In the similar 
cases, approximate methods are used to simplify the 
resulting functional. The expansion of the polaron 
functional into a series on the inverse Fröhlich coupling 
constant 11 <<α  with subsequent minimization on the 
variational parameters is one of the examples of 
obtaining an approximate value of the polaron energy for 
the intermediate and strong coupling region [8, 10, 18]. 

Variation of approximate functionals does not guarantee 
that an upper limit of the polaron energy can be found. 
Thus, variation of the approximate functional obtained 
by Feynman in the strong-coupling region was 
accompanied by the following comment on the 
magnitude of the polaron energy E : “The approxi-
mations do not keep E as an upper limit as, 
unfortunately, the further terms, of order 2/1 α  are 
probably positive”. In the general case, approximate 
methods can give reasonable values of the polaron 
energy not for the entire range of variational parameters. 
In this relation, it is necessary to find the region of 
admissible values of the variational parameters, for 
which the functionals obtained using the approximate 
methods are valid. 

From the standpoint of the comparing approximate 
and exact methods, one of the most interesting objects is 
the translationally-invariant (TI) polaron functionals 
obtained in the works by Gross [6] and Tulub [7].  

Up to the notation, the polaron functional obtained 
using the field theory methods in the papers of Gross and 
Tulub [6, 7] has the form: 
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where 0
1 4 lkVk πα−= , 220 kkk += ωω , (hereinafter 

10 =kω ), kf  is the variational function of the Gross–
Tulub method. The function D(s) coincides in its form 
with the dynamic susceptibility of a degenerate electron 
gas.  

We write expression (2) in an equivalent form, 
which is more convenient for variational calculations: 
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As was shown in [17], the functional (1) was 
written in [6, 7] only for the case when the complex 
quantity D(s) is located in the first quarter of the 
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complex plane, although the authors of [6,7] do not 
stipulated this particularity.  

In [8] fk minimized the polaron functional in the 
strong-coupling region was chosen in the form of one-
parameter Gaussian function: 

22 2ak
kk eVf −−=  , (5) 

where 0
1 4 lkVk πα−= , a is the variational parameter. 

We draw attention to the fact that the function (5) 
was chosen in a form that coincides with the Fourier 
component of the normalized Gaussian electron function 
of the Pekar polaron in the strong coupling limit. For the 
variational function defined by the expression (5), the 
function D(s) was obtained in [8] after substituting (5) 
into (3): 
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22 4 ay +=ξ . 

For 1>>y , the asymptotic expansion 
4431)( yyv λ−≈  is valid. For ( ) 4143λ== myy , 

0)( =myv .  
For the two-parameter function: 

22 2ak
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where a and N are the variational parameters, we make 
substitution πλλ 234 22 aNg=′→  in Eq. (6). 

Tulub [8] obtained a polaron functional in the form 
convenient for investigating not only the intermediate 
coupling, but also the region of extremely strong 
coupling. For the recoil terms in [8] the following 
expression was obtained: 
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In what follows, Eq. (1) with the recoil term 
determined by Eqs. (2) and (3) will be called the Gross–
Tulub functional, and the Tulub functional is the 
expression (1), in which the first term is written in the 
form (9):  
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The Tulub functional (10) can be represented in an 
approximate form. The variational parameter 1>>a  for 
the strong-coupling limit. In this case, in Eq. (9), we can 
approximately put 22kk ≈ω . After simplifications for 
the two-parameter function kf ′ , we obtain an 
approximate form for the functional of the translational-
ly invariant polaron: 
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Further simplification is related with calculation of 
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we obtain the following simplified expression: 
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Eq. (11) allows us to investigate the asymptotic 
behavior of the functional (10) in the limit ∞→α , at 
the same time, Eq. (13) is valid only for continuum 
polaron. This region is bounded by the coupling constant 

10...8≈α . In the range of 10≤α , the value 
( ) 0Re 2 >kD ω .  
Klimin and Devreese [13] showed that the delta-

like singularity appearing near the second zero of the 
expression ( ) )(1Re 2 yvD k λω +=  must be taken into 
account in the integral (12). In this case, instead of the 
approximate expression (13), we obtain: 
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In contrast to [13], we recorded the expression (14) 
for the two-parameter function kf ′  defined by Eq. (8), 
since it was shown in [19] that the one-parameter 
function fk (5) is not enough flexible to satisfy the virial 
relations of the polaron theory [1]. 

An approximate method of expanding the integrand 
of Eq. (12) with respect to λ1 , which was used in [8], 
results in a quadratic dependence of the leading term on 
α  in the expansion of the polaron energy. Thus, the one-
parameter test function fk was chosen in [8]. For 

01 →λ  in (12), the polaron energy is 2105.0 α−≈pE . 
This energy is extremely close to the value of Pekar 
polaron energy 2106.0 α−≈PE  in the strong coupling 
limit [1]. 

One of the differences between the Buimistrov–
Pekar TI polaron functional [18] and the TI functionals 
obtained by Gross [6] and Tulub [7, 8, 10] is that the 
strong coupling term, which leads to a quadratic 
dependence of the energy on α , can be distinguished 
from the Buimistrov-Pekar functional without expansion 
on α1 . The functionals (1) and (10) does not allow us 
to isolate a part of the strong coupling in the general 
form. In this case, it can turn out that quadratic 
dependence characterizing a strong coupling will prove 
to be a good approximation only for a certain range α , 
but not for all 1>>α . 

In [8], it was noted that the strong-coupling region, 
for which the approximation (13) is valid, actually 
reduces to zero, since electron-phonon interaction 
constant 8≈≤ mαα  for real crystals. Any singularities 
did not arise for such α  in the integrand of Eq. (12), so 
expansion on λ1  near 8≈α  could be regarded as a 
good approximation of the exact functional. The 
approximate energy of the Tulub polaron can be found 
after varying (13) on a. For the two-parameter function 

kf ′ , the corresponding energy is 2125.0 α−≈′′psE , 
which is located below the exact numerical value 

2
M 1085128.0 α−=E  obtained by Miyake [20] for the 

strong-coupling limit. However, psE ′′  was obtained as a 
result of varying the approximate functional (13), 
therefore it is not the upper limit for polaron energy. In 
addition, it is necessary to determine the range of 
admissible values on α , for which the approximate 
functional (13) does not lead to understated polaron 
energy, since instead of a strict variational procedure, we 
used an approximate method.  

Not only the approximate functional can lead to 
understated polaron energy. Variation of the exact 
functional without checking the results of calculations 
for self-consistency with the range of admissible values 
of the initial functional can also lead to unreasonably 
low values of the polaron energy. For example, we vary 
the Gross–Tulub functional (1) determined, as was 

shown in [17], only in the first coordinate quarter of the 
complex plane. Taking (4) into account, we obtain: 
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We compare the results of minimization (15) with 
the energy obtained by minimizing the same functional 
but determined for the entire upper half-plane. 
According to [17], the generalized functional has the 
form: 
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As was shown in [17], the functionals (10) and (17) 
are equivalent in the region 26≤α . In the region 

26>α , it is necessary to investigate asymptotic 
dependences, which are valid for large α  values and the 
integration variable y. Numerical calculations according 
to exact formulas are complicated in relation with the 
appearance of extremely small values of the exponential 
function ( )222exp ay−  for 1>>ay . 

Fig. 1a shows the dependence of the Gross–Tulub 
polaron energy GT

~E  on α  obtained by minimizing the 
exact functional (17). Minimization using the functional 
(10) leads to the same results (coincidence is with 6 
significant digits). psE ′′  – polaron energy obtained using 
the functional (13). Energy EGT obtained by 
minimization of the functional (15) begins to fall down 
from 10≈α  approaching a quadratic dependence and 
leads to understated values of the polaron energy. For 
very large α , it leads to an asymptotics 

2
GT 135.0 α−≈′E . In the same figure, the corresponding 

dependence for the Feynman polaron energy EF [9] are 
given for comparison. The functionals (13), (15) and 
(17) were minimized using the two-parameter variational 
function kf ′ . We use term the “exact functional” to 
distinguish a functional, minimization of which provides 
the upper bound of the polaron energy, and an 
approximate functional that does not guarantee this.  
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Fig. 1a. Dependences of polaron energy on α  for various 

functionals. psE ′′ , GTE  and GT
~E  are the energies obtained by 

minimization of the functionals (13), (15) and (17), respecti-
vely; EF is the Feynman polaron energy. 

 

 

Fig. 1b. The integrands of the recoil terms in the functionals 
(15) and (17). The factor π23 2a  is omitted. 

 
 
Fig. 1b shows the integrands of the recoil terms in 

expressions (15) and (17), as well as the values of )(yAt  

and )(~ ytA . Comparison of )(yZ  and )(~ yZ , )(yAt  and 

)(~ ytA  clearly demonstrates the reason for the 

understatement of the energy obtained using the 
functional (15), which is valid only for D(s) located in 
the first quarter of the complex coordinate plane, when 

0)(Re ≥sD . As soon as there are areas for which 
0)(Re <sD , the integrand starts to deviate downward 

from the correct value. Minimization of the functional 
(17) leads to correct results, which completely coincides 
with the polaron energy obtained using the Tulub 
functional (10).  

3. Investigation of the asymptotic dependence of the 
strong-coupling polaron 

Let us pass to definition of asymptotics on α  of energy 
obtained using the exact functional (17) in the strong-
coupling limit. For 01 =λ , )( 2

kD ω  has a unique zero 
on the real axis, coinciding with the zero of the function 

)(yv defined by Eq. (7). Therefore, ( )2Re kD ω  tends 
asymptotically to zero from the sides of the negative 
values, and the integrand ∞→= )(~)(~ ytAyyZ  in 
accordance with Eq. (18). I.e., the positive contribution 
to the phonon functional increases indefinitely, and the 
polaron energy tends to zero. Thus, expansion in a series 
on the parameter 11 <<λ  is not justified in this case. It 

is necessary to save in ( )2
kD ω  the small but finite 

parameter λ1 . It provides the returning ( )2
kD ω  from the 

second quarter of the complex plane to the first, where 
( ) 0Re 2 ≥kD ω . When 11 <<λ  and 1>>y , the right 

decreasing part of the function )(~ yZ  in Fig. 1b takes  
the vertical position and the integrand function can  
be approximated using the theta function 
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The polaron energy for extremely large α  
( 11 <<λ ) can be obtained by minimizing the 
functional: 
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where [ ] 414),,(3 Naym αλ=  is the asymptotic value of 

( ){ }2Reroot yD ω  for 1>>= aky , a, N are the 
variational parameters. 

For one-parameter function fk, the asymptotic 
dependence of the polaron energy defined by 
minimization of the functional (20) has the form: 

{ } 34

1
GTGT 31683.0min α

α
−==

>>
JE

a
as . This asymptotic 

behavior coincides with the asymptotics obtained for the 
Tulub functional (11) in [13] by varying the approximate 
functional (14). The approximate functional (14) was 
obtained by expansion of the Tulub functional (11) on 
λ1 , but taking into account the additional term 

associated with the appearance of a singularity in the 
integrand in Eq. (12) appearing for small but finite 
values λ1  at the point myy = . 

For the two-parameter function kf ′ , the 
corresponding asymptotic dependence for the functional 

GT
~J  defined by Eq. (20) has the form: 

34
GT 31767.0~ α−=asE .  (21) 

4. The strong-coupling limit and the virial theorem 

We note that the variation of the approximate functionals 
(11), (13) and (14) with using the one-parameter 
function does not lead to the fulfillment of the virial 
theorem relations for the polaron. So, the one-parameter 
function (5) is not sufficiently flexible. At the same time, 
for a two-parameter function (8) numerical verification 
showed that the known relations 1:3:4 of the virial 
theorem [21], which do not depend on the electron-
phonon interaction, are satisfied to within 7 significant 
digits. For the functional (13), the variation of which 
leads to a quadratic dependence on the parameter α , the 
Pekar theorem for the strong coupling polaron 1:2:3:4 
holds [19].  

We verify the fulfillment of the virial theorem for 
the functional (20). The first term in Exp. (20) plays 
the role of kinetic energy for the limit 1>>α , the 
second term corresponds to the electron-phonon 
interaction Eint, the third one describes contribution of 
the phonon field Eph.  

We introduce the following definitions in accord 
with [21]: 

2intkin EEF +=  and intkinel EEE += .  (22) 

As a result of numerical verification for the 
minimum of the functionals (14) and (20) in the 
asymptotics 1>>α , we obtain:  

34
kin 0.2117827α=−= FE , 

34
el 0.21178273 α−== FE , 

34
int 0.21178274 α−== FE . (23) 

The relation 1:2, when FE −=2ph , is satisfied 
only in the case when the polaron energy is proportional 
to 2α , which is possible in the strong coupling limit 
(Pekar theorem) [1].  

As can be seen from Fig. 1a, the quadratic 
dependence of the polaron energy 2125.0 α−≈′′psE  
obtained by varying the approximate functional (13) 
with using the two-parameter function kf ′  can serve as 
the upper limit of the polaron energy only in the region 

5.7≤α . For the one-parameter (N = 1)function fk used 
in [8], the corresponding domain is somewhat expanded: 

5.8≤α . Tulub [8] draws attention to the fact that in real 
crystals the maximum coupling constants can not exceed 
values 9...8max ≈α . The field of existence of the strong-
coupling theory narrows to zero in fact. Fig. 1a can serve 
as a graphic illustration of this statement. The 
intersection point of the strong-coupling energy and the 
polaron energy obtained by varying the exact functionals 
(10) or (17) is a point near which minimization of the 
approximate functional (13) yields results that coincide 
with the minimization of the exact functionals. For 
smaller ones, it can serve as the upper limit of the 
polaron energy, at large it lowers the polaron energy in 
comparison with the value obtained by minimizing the 
exact functional. 

5. Сonclusion 

The Gross–Тulub polaron functionals [6, 7] were 
determined only for the range of parameters, in which 
the function D(s) is located in the first quarter of the 
complex plane. Therefore, these functionals can not be 
used to find the asymptotic dependences of the polaron 
energy for the region of extremely strong coupling. 

Asymptotic dependences of the polaron energy in 
the region of ultimately large α  are found using the 
functional obtained in [17]. This functional makes it 
possible to extend the range of admissible values of the 
parameters to the strong-coupling region in which the 
function )(Re sD  can take negative values. The region 
of polaron existence on α  can be conditionally divided 
into two parts: the region of continual polaron and 
region of extremely strong coupling for which the 
mathematical expressions obtained in the framework of 
the continuum theory are formal nature (a mathematical 
polaron). The region of existence of a continuum 
polaron for real crystals is limited by quantities 
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10...8≈α . For this α  and trial functions studied in this 
paper, the function 0)(Re >sD .  

For the region of extremely strong coupling (the 
domain of existence of a mathematical polaron), the 
quantity D(s) can be found both in the first and in the 
second quarter of the complex plane. In this region, the 
polaron energy tends to the asymptotic dependence 
defined by the expression (21). Approximate polaron 
functionals (14) and (20) minimized using the two-
parameter test function kf ′ , satisfy the virial theorem 
1:3:4. That is valid for arbitrary electron-phonon 
interaction. 

For 8...5.7≈α , the function 0)(Re >sD , and the 
approximate Tulub functional (13) is a good 
approximation for the exact polaron functionals 
determined by the expressions (10) or (17). In this 
region, the polaron energy depends quadratically on α  
and the strong-coupling polaron virial theorem 1:2:3:4 
holds. 

The author is grateful to A.V. Tulub for numerous 
fruitful scientific advice and discussion of the results of 
work. 
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