Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (4), P. 325-335 (2018).
DOI: https://doi.org/10.15407/spqeo21.04.325


References

1. Millan J., Godignon P., Perpina X., Perez-Tomas A. and Rebollo J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electronics. 2014. 29, No 5. P. 2155–2163.
https://doi.org/10.1109/TPEL.2013.2268900

2. Chowdhury S., Swenson B.L., Wong M.H. and Mishra U.K. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 2013. 28, No 7. P. 074014.
https://doi.org/10.1088/0268-1242/28/7/074014

3. Avrutin V., Hafiz S.A., Zhang F., Özgür Ü., Morkoc H. and Matulionis A. InGaN light-emitting diodes: Efficiency-limiting processes at high injection. J. Vac. Sci. Technol. A. 2013. 31, No 5. P. 050809.
https://doi.org/10.1116/1.4810789

4. Lu N. and Ferguson I. III-nitrides for energy production: photovoltaic and thermoelectric applications. Semicond. Sci. Technol. 2013. 28, No 7. P. 074023.
https://doi.org/10.1088/0268-1242/28/7/074023

5. Beeler M., Trichas E. and Monroy E. III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 2013. 28, No 7. P. 074022.
https://doi.org/10.1088/0268-1242/28/7/074022

6. Sydoruk. V.A., Zadorozhnyi I., Hardtdegen H., Luth H., Petrychuk M.V., Naumov A.V., Korotyeyev V.V., Kochelap V.A., Belyaev A.E. and Vitusevich S.A. Electronic edge-state and space-charge phenomena in long GaN nanowires and nanoribbons. Nanotechnology. 2017. 28. P. 135204.

7. Ahi K. Review of GaN-based devices for terahertz operation. Opt. Eng. 2017. 56, No 9. P.090901.
https://doi.org/10.1117/1.OE.56.9.090901

8. Korotyeyev V.V., Kochelap V.A., Kim K.W., and Woolard D.L. Streaming distribution of two-dimensional electrons in III-N heterostructures for electrically pumped terahertz generation. Appl. Phys. Lett. 2003. 82, No 16. P. 2643–2645.
https://doi.org/10.1063/1.1569039

9. Kim K.W., Korotyeyev V.V., Kochelap V.A., Klimov A.A., and Woolard D.L. Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides. J. Appl. Phys. 2004. 96, No 11. P. 6488–6491.
https://doi.org/10.1063/1.1811388

10. Knap W., Kachorovskii V., Deng Y., Rumyantsev S., Lu J.-Q., Gaska R., Shur M.S., Simin G., Hu X., Khan M.A., Saylor C.A. and Brunel L.C. Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 2002. 91, No 11. P. 9346–9353.
https://doi.org/10.1063/1.1468257

11. Laurent T., Sharma R., Torres J. et al. Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure Appl. Phys. Lett. 2011. 99. P. 082101.
https://doi.org/10.1063/1.3627183

12. Santoruvo G., Allain A., Ovchinnikov D. and Matioli E. Magneto-ballistic transport in GaN nanowires. Appl. Phys. Lett. 2016. 109. P.103102.
https://doi.org/10.1063/1.4962332

13. Bouguen L., Contreras S., Jouault A.B., Konczewicz L., Camassel J., Cordier Y., Azize M., Chenot S. and Baron N. Investigation of AlGaN/AlN/GaN heterostructures for magnetic sensor application from liquid helium temperature to 300 °C. Appl. Phys. Lett. 2008. 92. P. 043504.
https://doi.org/10.1063/1.2838301

14. Gilbertson A.M., Benstock D., Fearn M., Kormanyos A., Ladak S., Emeny M.T., Lambert C.J., Ashley T., Solin S.A. and Cohen L.F. Sub-100-nm negative bend resistance ballistic sensors for high spatial resolution magnetic field detection. Appl. Phys. Lett. 2011. 98, No 6. P. 062106.
https://doi.org/10.1063/1.3554427

15. Look D.C. and Sizelove J.R. Predicted maximum mobility in bulk GaN. Appl. Phys. Lett. 2001. 79, No 8. P.1133–1135.
https://doi.org/10.1063/1.1394954

16. Starikov E., Shiktorov P., Gruzinskis V., Varani L., Palermo C., Millithaler J-F and Regiani L. Frequency limits of terahertz radiation generated by optical-phonon transit-time resonance in quantum wells and heterolayers. Phys. Rev. B. 2007. 76, No 4. P. 045333; Terahertz generation in nitrides due to transit-time resonance assisted by optical phonon emission. J. Phys.: Condens. Matter. 2008. 20, No 38. P. 384209.
https://doi.org/10.1088/0953-8984/20/38/384209

17. Lu J.T. and Cao J.C. Monte Carlo study of terahertz generation from streaming distribution of two-dimensional electrons in a GaN quantum well. Semicond. Sci. Technol. 2005. 20, No 8. P. 829–833.
https://doi.org/10.1088/0268-1242/20/8/034

18. Barry E.A., Kim K.W., and Kochelap V.A. Hot electrons in group-III nitrides at moderate electric fields. Appl. Phys. Lett. 2002. 80, No 13. P. 2317–2319.
https://doi.org/10.1063/1.1464666

19. Yilmazoglu O., Mutamba K., Pavlidis D. and Karaduman T. Measured negative differential resistivity for GaN Gunn diodes on GaN substrate. Electronics Lett. 2007. 43, No 8. P. 480–482.
ttps://doi.org/10.1049/el:20070658

20. Syngayivska G.I. and Korotyeyev V.V. Electrical and high-frequency properties of compensated GaN under electron streaming conditions. Ukr. J. Phys. 2013. 58, No 1. P. 40–55.
https://doi.org/10.15407/ujpe58.01.0040

21. Korotyeyev V.V. Peculiarities of THz-electromagnetic wave transmission through the GaN films under conditions of cyclotron and optical phonon transit-time resonances Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. 16, No 1. P. 18–26.
https://doi.org/10.15407/spqeo16.01.018

22. Syngayivska G.I., Korotyeyev V.V., Kochelap V.A. and Varani L. Magneto transport in crossed electric and magnetic fields in compensated bulk GaN. J. Appl. Phys. 2016. 120. P. 095704.
https://doi.org/10.1063/1.4962215

23. Syngayivska G.I. and Korotyeyev V.V. Electron transport in crossed electric and magnetic fields under the condition of the electron streaming in GaN. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. 18, No 1. P. 79–85.
https://doi.org/10.15407/spqeo18.01.079

24. Mitin V.V., Kochelap V.A., Stroscio M.A. Quantum Heterostructures: Microelectronics and Optoelectronics. New York: Cambridge University Press, 1999.

25. Nag B.R. Diffusion equation for hot electron. Phys. Rev. B. 1975. 11, No 8. P. 3031–3036.
https://doi.org/10.1103/PhysRevB.11.3031

26. Gupta M.S. Random walk calculation of diffusion coefficient in two-valley semiconductors. J. Appl. Phys. 1978. 49, No 5. P. 2837–2844.
https://doi.org/10.1063/1.325164

27. Fauquembergue R., Zimmermann J., Kaszynski A., Constant E. and Microondes G. Diffusion and the power spectral density and correlation function of velocity fluctuation for electrons in Si and GaAs by Monte Carlo methods. J. Appl. Phys. 1980. 51, No 2. P. 1065–1071.
https://doi.org/10.1063/1.327713

28. Ferry D.K. and Barker J.R. Generalized diffusion, mobility, and the velocity autocorrelation function for high-field transport in semiconductors. J. Appl. Phys. 1981. 52, No 2. P. 818–824.
https://doi.org/10.1063/1.328421

29. Hot Electron Diffusion. Ed. J. Pozhela. Vilnius, Mokslas, 1981 (in Russian).

30. Pozhela J.K and Repshas K.K. Thermoelectric force of hot carriers. phys. status solidi. 1968. 27, No 2. P. 757–762.

31. Ruch J.G. and Kino G.S. Transport properties of GaAs. Phys. Rev. 1968. 174, No 3. P. 921–931.
https://doi.org/10.1103/PhysRev.174.921

32. Nougier J.P., Comallonga J. and Rolland M. Pulsed technique for noise temperature measurement. J. Phys. E: Sci. Instrum. 1974. 7. P. 287–290.
https://doi.org/10.1088/0022-3735/7/4/021

33. Eichler H.J., Gunter P., Pohl D.W. Laser-Induced Dynamic Grattings. Berlin: Springer-Verlag, Berlin Heidelberg, 1986.
https://doi.org/10.1007/978-3-540-39662-8

34. Linnros J. and Grivickas V. Carrier-diffusion measurements in silicon with a Fourier-transient-grating method. Phys. Rev. B. 1994. 50. P.16943–16955.
https://doi.org/10.1103/PhysRevB.50.16943

35. Starikov E., Shiktorov P., Gruzinskis V., Reggiani L., Varani L., Vaissiere J.C. and Palermo C. Monte Carlo calculations of hot-electron transport and diffusion noise in GaN and InN. Semicond. Sci. Technol. 2005. 20, No 3. P. 279–285.
https://doi.org/10.1088/0268-1242/20/3/004

36. Wang S., Liu H., Gao B. and Cai H. Monte Carlo calculation of electron diffusion coefficient in wurtzite indium nitride. Appl. Phys. Lett. 2012. 100. P. 142105.
https://doi.org/10.1063/1.3700720

37. Aleksiejūnas R., Podlipskas Ž., Nargelas S., Kadys A., Kolenda M., Nomeika K., Mickevičius J. and Tamulaitis G. Direct Auger recombination and density-dependent hole diffusion in InN. Sci. Reports. 2018. 8. P. 4621.
https://doi.org/10.1038/s41598-018-22832-

38. Syngayivska G.I., Korotyeyev V.V. and Kochelap V.A. High-frequency response of GaN in moderate electric and magnetic fields: interplay between cyclotron and optical phonon transient time resonances. Semicond. Sci. Technol. 2013. 28, No 3. P. 035007.
https://doi.org/10.1088/0268-1242/28/3/035007

39. Price P.J. Calculation of hot electron phenomena. Solid-State Electronics. 1978. 21. P. 9–16.
https://doi.org/10.1016/0038-1101(78)90109-0

40. Jacoboni C. and Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys.1983. 55, No 3. P. 645‑705.
https://doi.org/10.1103/RevModPhys.55.645

41. Vosilius I.I. and Levinson I.B. Optical phonon production and galvanomagnetic effects for a large-anisotropy electron distribution. Soviet Physics JETP. 1966. 23, No 6, P. 1104–1107; Galvanomagnetic effects in strong electric fields during nonelastic electron scattering. Soviet Physics JETP. 1967. 25, No 4. P. 672–679.

42. Kochelap V.A., Korotyeyev V.V., Syngayivska G.I. and Varani L. High-field electron transport in GaN under crossed electric and magnetic fields. J. Phys.: Conf. Series. 2015. 647. P. 012050.
https://doi.org/10.1088/1742-6596/647/1/012050