Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (4), P. 345-359 (2018).
DOI: https://doi.org/10.15407/spqeo21.04.345


References

1. Bletskan D.I. Crystalline and Glassy Chalcogenides of Si, Ge, Sn and Alloys on Their Basis, Vol. 1. Uzhhorod, Zakarpattia, 2004.>

2. Palosz B., Steurer W. and Schulz H. Refinement of SnS2 polytypes 2H, 4H and 18R. Acta Cryst. B. 1990. 46. P. 449–455.
https://doi.org/10.1107/S0108768189012577

3. Palosz B. and Salje E. Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. J. Appl. Crystallography. 1989. 22. P. 622–623.
https://doi.org/10.1107/S0021889889006916

4. Whitehouse C.R. and Balchin A.A. Polytypism in tin disulfide. J. Cryst. Growth. 1979. 47. P. 203–212.
https://doi.org/10.1016/0022-0248(79)90243-4

5. Kourtakis K., DiCarlo J., Kershaw R., Dwight K. and Wold A. Preparation and characterization of SnS2. J. Solid State Chem. 1988. 76. P. 186–191.
https://doi.org/10.1016/0022-4596(88)90206-X

6. Shibata T., Muranushi Y., Miura T. and Kishi T. Electrical characterization of 2H-SnS2 single crystals synthesized by the low temperature chemical vapor transport method. J. Phys. Chem. Solids. 1991. 52. P. 551–553.
https://doi.org/10.1016/0022-3697(91)90190-B

7. Conroy L. and Park K.C. Electrical properties of the group IV disulfides TiS2, ZnS2, HfS2, and SnS2. Inorg. Chem. 1968. 7. P. 459–463.
https://doi.org/10.1021/ic50061a015

8. Said G. and Lee P.A. Electrical conduction mechanisms in tin disulphide. phys. status solidi (a). 1973. 15. P. 99–103.

9. Fong C.Y. and Cohen M.L. Electronic energy-band structure of SnS2 and SnSe2. Phys. Rev. B. 1972. 5. P. 3095–3101.
https://doi.org/10.1103/PhysRevB.5.3095

10. Schlüter I.Ch. and Schlüter M. The electronic structure of SnS2 and SnSe2. phys. status solidi (b). 1973. 57. P. 145–155.

11. Mula G. and Aymerich F. Electronic structure of SnS2. phys. status solidi (b). 1972. 51. P. K35–K37.

12. Murray R.B. and Williams R.H. Band structure and photoemission studies of SnS2 and SnSe2: II. Theoretical. J. Phys. C. 1973. 6. P. 3643–3651.

13. Robertson J. Electronic structure of SnS2, SnSe2, CdI2 and PbI2. J. Phys. C. 1979. 12. P. 4753–4766.

14. Powell M.J., Marseglia E.A. and Liang W.Y. The effect of polytypism on the band structure of SnS2. J. Phys. C. 1978. 11. P. 895–904.

15. Schlüter I.Ch. and Schlüter M. Electronic structure of SnS2 and SnSe2. Helv. Phys. Acta. 1973. 46. P. 31.
https://doi.org/10.1002/pssb.2220570114

16. Schluter M. Band structure of GaSe. Nuovo Cimento B. 1973. 13. P. 313–320.
https://doi.org/10.1007/BF02726713

17. Aymerich F., Meloni F. and Mula G. Pseudopotential band structure of solid solutions SnSxSe2–x. Solid State Commun. 1973. 12. P. 139–141.
https://doi.org/10.1016/0038-1098(73)90523-1

18. Aymerich F. and Mula G. Pseudopotential band structures of Mg2Si, Mg2Ge, Mg2Sn, and of the solid solution Mg2(Ge, Sn). phys. status solidi (b). 1970.42. P. 697–704.

19. Bordas J., Robertson J. and Jakobsson A. Ultraviolet properties and band structure of SnS2, SnSe2, CdJ2, PbJ2, BiJ2 and BiOJ crystals. J. Phys. C. 1978. 11. Ppp. 2607–2621.

20. Gonzalez J.M. and Oleynik I.I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B. 2016. 94. P. 125443-1–10.
https://doi.org/10.1103/PhysRevB.94.125443

21. Hohenberg P. and Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964. 136. P. B864–B871.
https://doi.org/10.1103/PhysRev.136.B864

22. Kohn W. and Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. 140. P. A1133–A1138.
https://doi.org/10.1103/PhysRev.140.A1133

23. Anisimov V.I., Zaanen J. and Andersen O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B. 1991. 44. P. 943–954.
https://doi.org/10.1103/PhysRevB.44.943

24. Anisimov V.I., Aryasetiawan F. and Lichtenstein A.I. First-principal calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. 1997. 9. P. 767–808.

25. http://icmab.cat/leem/siesta/ 26. Soler J.M., Artacho E., Gale J.D., García A., Junquera J., Ordejón P. and Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J. Phys. 2002. 14. P. 2745–2779.

27. Greenaway D.L. and Nitsche R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids. 1969. 26. P. 1445–1458.
https://doi.org/10.1016/0022-3697(65)90043-0

28. Lee P.E., Said G., Davis R. and Lim T.H. On the optical properties of some layer compounds. J. Phys. Chem. Solids. 1969. 30. P. 2719–2729.
https://doi.org/10.1016/0022-3697(69)90045-6

29. Powell M.J. The effect of pressure on the optical properties of 2H and 4H-SnS2. J. Phys. C. 1977. 10. P. 2967–2977.

30. Williams R.H., Murray R.B., Govan D.W., Thomas J.M. and Evans E.L. Band structure and photoemission studies of SnS2 and SnSe2: I. Experimental. J. Phys. C. 1973. 6. P. 3631–3642.

31. Margaritondo G., Rowe J.E., Schluter M. and Kasper H. Conduction and valence band density of states of SnS2: theory and experiment. Solid State Commun. 1977. 22. P. 753–757.
https://doi.org/10.1016/0038-1098(77)90061-8

32. Nakata R., Yamaguchi M., Zembutsu S. and Sumita M. Crystal growth and photoconductive effects of stannic chalcogenides. J. Phys. Soc. Jpn. 1972. 32. P. 1153.
https://doi.org/10.1143/JPSJ.32.1153

33. Patil S.G. and Tredgold R.H. Electrical and photoconductive properties of SnS2 crystals. J. Phys. D. 1971. 4. P. 718–722.
https://doi.org/10.1088/0022-3727/4/5/312

34. Milnes A.G. Deep Impurities in Semiconductors. New York, Wiley, 1973.

35. Pyykkö P. Refitted tetrahedral covalent radii for solids. Phys. Rev. B. 2012. 85. P. 024115-1–7.
https://doi.org/10.1103/PhysRevB.85.024115

36. Bletskan D.I. and Frolova V.V. The influence method and conditions for growing on the electrical properties of SnS2 crystals. Naukovyi visnuk Uzhgorod. Natsional. Universitetu. Ser. Fizyka. 2015. 37. P. 36–50 (in Ukrainian).