Semiconductor
Physics, Quantum Electronics and Optoelectronics, 21 (4), P. 380-386 (2018). References
1. Rayanov K., Altshuler B.L., Rubo Y.G. and Flach S. Frequency combs with weakly lasing exciton-polariton condensates. Phys. Rev. Lett. 2015. 114. P. 193901.
2. Yongzhuo Li, Jianxing Zhang, Dandan Huang, Hao Sun, Fan Fan, Jiabin Feng, Zhen Wang, Ning C.Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology. 2017. 12, No 10. P. 987–992.
3. Zuev V.A., Korbutyak D.V., Litovchenko V.G., Hudymenko L.F. and Hule E.M. Collective effects on semiconductor surfaces (GaAs). Zh. Eksperim. Teor. Fiz. 1975. 69. P. 1289–1300.
4. Zuev V.A., Korbutyak D.V., Kryuchenko Yu.V. and Litovchenko V.G. Electron-hole liquid at the interface of layered structure. Fiz. Tverd. Tela. 1978. 20, Issue 10. P. 2908 (in Russian).
5. Litovchenko V.G., Korbutyak D.V., Kryuchenko Yu.V. Collective properties of excitons in polar semiconductors (ZnO). Zh. Eksp. Teor. Fiz. 1982. 81, Issue 6(12). P. 1452 (in Russian).
6. Litovchenko V.G. Korbutyak D.V. The parameters of quasi-two-dimensional electron-hole plasma stimulated by laser radiation. Surf. Sci. 1986. 170. P. 671–675.
7. Korbutyak D.V. and Litovchenko V.G. Expansion of the electron-hole liquid plasma at GaAs surface. phys. status solidi (b). 1983. 120, Issue 1. P. 87–97.
8. Korbutyak D.V., Kryuchenko Yu.V. and Litovchenko V.G., Baltrameyunas R., Gerazimas E. and Kuokshtis E. Investigation of the optical gain spectra in two-dimensional quantum well heterostructures. Zh. Eksp. Teor. Fiz. 1989. 96. P. 1332–1339.
9. Baltrameyunas R., Gerazimas E., Korbutyak D.V., Kryuchenko Yu.V., Kuokshtis E., Litovchenko V.G. Peculiarities of the optical gain spectra of quasi-two-dimentional electron-hole plasma. Fiz. Tverd. Tela. 1988. 30, Issue 7. P. 2020–2023 (in Russian).
10. Litovchenko V.G., Grygoriev A.A. Electron-hole Fermi liquid in nanosized semiconductor structures. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2010. 13, No 1. P. 051–057.
11. Miró P., Audiffred M., Heine T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014. 43, No 18. P. 6537.
12. Xinming Li, Li Tao, Zefeng Chen, Hui Fang, Xuesong Li, Xinran Wang, Jian-Bin Xu, and Hongwei Zhu. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017. 4. P. 021306.
13. Yazyev O.V., Kis A. MoS2 and semiconductors in the flatland. Mater. Today. 2015. 18. P. 20–30.
14. Jaewoo Shim, Seyong Oh, Dong-Ho Kang, Seo-Hyeon Jo, M.H. Ali, Woo-Young Choi, Keun Heo, Jaeho Jeon, Sungjoo Lee, Minwoo Kim, Young Jae Song. Jin-Hong Park. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nature Commun. 2016. 7. P. 13413.
15. Sze S.M. Physics of Semiconductor Devices. Wiley, 1981.
16. Negative Differential Resistance and Instabilities in 2-D Semiconductors. Ed. by N. Balkan, B.K. Ridley, A.J.Vickers. Plenum Press, 1993.
17. Zhao Y., Wan Z., Hetmaniuk U., Anantram N.P. Negative differenial resistance in graphene boron nitride heterostructure controlled by twist and phonon-scattering. ArXiv: 1702.04435 (2017).
18. He G., Nathawat J., Kwan C.-P. et al. Negative differential conductance and hot-carrier avalanching in monolayer WS2 FETs. Sci. Rep. 2017. 7. P. 11256.
19. Lytovchenko V.G., Kurchak A.I., Strikha M.V. Theoretical model for negative differential conductance in 2D semiconductor monolayers. Ukr. J. Phys. 2018. 63, No 6. P. 527–530.
20. Lytovchenko V., Kurchak A., Strikha M. The semi-empirical tight-binding model for carbon allotropes "between diamond and graphite". J. Appl. Phys. 2014. 115. P. 243705. 0.
|