Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (4), P. 402-406 (2018).
DOI: https://doi.org/10.15407/spqeo21.04.402


References

1. Ozgur U., Alivov Y., Morkoc H. Microwave Ferrites, Part 1: Fundamental properties. J. Mater. Sci.: Materials in Electronics. 2009. 20, No 9. P. 789–834. DOI: 10.1007/s10854-009-9923-2.
https://doi.org/10.1007/s10854-009-9923-2

2. Asiri S., Guner S., Demir A., Yildiz A., Manikandan A., Baykal A. Synthesis and magnetic characterization of Cu substituted barium hexaferrites. Journal of Inorganic and Organometallic Polymers and Materials. 2017. P. 1–7. DOI: 10.1007/s10904-017-0735-1.
https://doi.org/10.1007/s10904-017-0735-1

3. Chen D., Chen Z., Wang G., Chen Y., Li Y., Liu Y. Effect of Al on the microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite thin films. J. Magn. Magn. Mater. 2017. 444. P. 7–11. DOI: 10.1016/j.jmmm.2017.07.090.
https://doi.org/10.1016/j.jmmm.2017.07.090

4. Sorochak A.M., Kostenko V.I., Chamor T.G., Chevnyuk L.V. Pulse-switchable microwave resonator on a basis of monocrystal hexaferrite. Radioelectron. Commun. Syst. 2011. 54, No 8. P. 411–414. DOI: 10.3103/S0735272711080024.
https://doi.org/10.3103/S0735272711080024

5. Patent for useful model № 105503, Ukraine. CI H01P 1/217 (2006.1). Sorochak A.M., Kostenko V.I., Chevnyuk L.V., Nikytenko A.L. Millimeter wave tunable ferrite-dielectric resonator. № appl. u2015 08405, 27.08.2015. Publ. 25.03.2016, Bull. №6.

6. Vinnik D.A., Ustinov A.B., Zherebtsov D.A., Vitko V.V., Gudkova S.A., Zakharchuk I., Lahberanta E., Niewa R. Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals. Ceramics Intern. 2015. 41, No 10. P. 12728–12733. DOI: 10.1016/j.ceramint.2015.06.105.
https://doi.org/10.1016/j.ceramint.2015.06.105

7. Kojima H., Goto K. Remanent domain structures of BaFe12O19. J. Appl. Phys. 1965. 36, No 2. P. 538–543.
https://doi.org/10.1063/1.1714026

8. Sigal M.A. Resonance absorption of barium-ferrite single crystals in remanence state. Ukr. J. Phys. 1976. 21, No 4. P. 600–605 (in Russian).

9. Nikytenko A.L., Kostenko V.I., Chevnyuk L.V., Grygoruk V.I., Romaniuk V.F. Tunable bandpass transmission line based on uniaxial single-crystal hexaferrites in multidomain area. Journal of Nano- and Electronic Physics. 2017. 9, No 2. P. 02010 (5 p.). DOI: 10.21272/jnep.9(2).02010.
https://doi.org/10.21272/jnep.9(2).02010

10. Salata M.M., Kostenko V.I., Chevnyuk L.V., Sorochak A.M., Chamor T.G. Generation of domain structures in uniaxial hexaferrite. VII Int. Conf. "Electronics and applied physics". Kyiv, Ukraine, Oct. 19–22, 2011. P. 45–46.

11. Gemperle R., Murtinova L., Kaczer J. On the magnetization curves of bubble lattices. Czech. J. Phys. 1987. 37, No 1. P. 64–73.
https://doi.org/10.1007/BF01597880

12. Chamor T.G. Electromagnetic-spin waves and oscillations in multilayered structures within the millimeter wave range. PhD thesis. Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, 2006 (in Ukrainian).

13. Sigal M.A., Kostenko V.I. Magnetostatic modes in a thin uniaxial platelet with bubble lattice at normal magnetization. phys. status solidi (a). 1991. 128, No 1. P. 219–234. DOI: 10.1002/pssa.2211280125.
https://doi.org/10.1002/pssa.2211280125