Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (4), P. 424-428 (2018).
DOI: https://doi.org/10.15407/spqeo21.04.424


References

1. Cunyun Ye, Tunable External Cavity Diode Lasers. World Scientific, 2004.
https://doi.org/10.1142/5694

2. T. Hieta, M. Vainio, C. Moser, E. Ikonen External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Opt. Commun. 2009. 282, No 5. P. 3119–3123.
https://doi.org/10.1016/j.optcom.2009.04.047

3. Ho-Chiao Chuang, Chang-Ray Chang, Chun-Chia Chen, Ming-Shien Chang. An external cavity diode laser using a volume holographic grating. Optics & Laser Technology. 2012. 44, No 7. P. 2182–2185.
https://doi.org/10.1016/j.optlastec.2012.03.004

4. Matsnev I.V. and Negriyko A.M. Controlled optical feedback in external cavity diode laser with volume holographic grating. 2016 IEEE 7-th Intern. Conf. on Advanced Optoelectronics and Lasers (CAOL), Odessa, 2016. P. 165–166.

5. Volodin B.L., Dolgy S.V., Melnik E.D., Downs E., Shaw J., Ban V.S. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 2004. 29, No 16. P. 1891–1893.
https://doi.org/10.1364/OL.29.001891

6. Chann B., Nelson I., Walker T.G. Frequency-narrowed external-cavity diode-laser-array bar. Opt. Lett. 2000. 25, No 18. P. 1352–1354.
https://doi.org/10.1364/OL.25.001352

8. Menzel U. et al. Modelling the temperature dependence of threshold current, external differential efficiency and lasing wavelength in QW laser diodes. Semicond. Sci. Technol. 1995. 10, No 10. P. 1382.
https://doi.org/10.1088/0268-1242/10/10/013

9. Tkach R.W. and Chraplyvy A.R. Regimes of feedback effects in 1.58 μm distributed feedback lasers. J. Lightwave Technol. 1986. 4, No 11. P. 1655–1661.
https://doi.org/10.1109/JLT.1986.1074666

10. Schunk N. and Petermann K. Numerical analysis of the feedback regimes for a single mode semiconductor laser with external feedback. IEEE J. Quantum Electron. 1988. 24, No 7. P. 1242–1247.
https://doi.org/10.1109/3.960

11. Kogelnik H. Coupled wave theory for thick hologram gratings. Bell System Tech. J. 1969. 48, No 7. P. 2909.
https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

12. Smirnova T., Sakhno O. PPC: Self-developing photopolymers for holographic recording. Proc. SPIE. 2000. 4149. P. 106–112.
https://doi.org/10.1117/12.402466

13. Sakhno O.V., Goldenberg L.M., Stumpe J. and Smirnova T.N. Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites. J. Opt. A: Pure and Appl. Opt. 2009. 11, No 2. P. 024013.
https://doi.org/10.1088/1464-4258/11/2/024013