Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 397-403 (2019).
DOI: https://doi.org/10.15407/spqeo22.04.397


References

1. Zhang Z., Farzana E., Arehart A.R. and Ringel S.A. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl. Phys. Lett. 2016. 108. P. 052105.
https://doi.org/10.1063/1.4941429
2. Higashiwaki M., Sasaki K., Kuramata A., Masui T. and Yamakoshi S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012. 100. P. 013504. https://doi.org/10.1063/1.3674287.
https://doi.org/10.1063/1.3674287
3. Fujita S. Wide-bandgap semiconductor materials: For their full bloom. Jpn. J. Appl. Phys. Part 1. 2015. 54. P. 030101. https://doi.org/10.7567/JJAP.54.030101.
https://doi.org/10.7567/JJAP.54.030101
4. Stepanov S.I., Nikolaev V.I., Bougrov V.E. and Romanov A.E. Gallium oxide: properties and applications - a review. Rev. Adv. Matter. Sci. 2016. 44. P. 63-86.
5. Pearton S.J., Jiancheng Yang J., Cary P.H. et al. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018. 5. P. 011301.
https://doi.org/10.1063/1.5006941
6. Víllora E.G., Arjoca S., Shimamura K., Inomata D., and Aoki K. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices. Proc SPIE, Oxide-based Materials and Devices. 2014. 8987. P. 89871U.
https://doi.org/10.1117/12.2039305
7. Kaun S.W., Wu F. and Speck J.S. β-(AlxGa1-x)2O3/ Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. A. 2015. 33. P. 041508. https://doi.org/10.1116/1.4922340.
https://doi.org/10.1116/1.4922340
8. Sasaki K., Higashiwaki M., Kuramata A., Masui T. and Yamakoshi S. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrate. IEEE Electron. Device Lett. 2013. 34. P. 493-495. https://doi.org/10.1109/LED.2013.2244057.
https://doi.org/10.1109/LED.2013.2244057
9. Oishi T., Koga Y., Harada K. and Kasu M. High-mobility β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express. 2015. 8. P. 031101.
https://doi.org/10.7567/APEX.8.031101
10. Jayawardena A., Ahyi A.C. and Dhar S. Analysis of temperature dependent forward characteristics of Ni/ β-Ga2O3 Schottky diodes. Semicond. Sci. Technol. 2016. 31. P. 115002.
https://doi.org/10.1088/0268-1242/31/11/115002
11. Higashiwaki M., Sasaki K., Murakami H. et al. Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 2016. 31. P. 034001.
https://doi.org/10.1088/0268-1242/31/3/034001
12. Higashiwaki M., Konishi K., Sasaki K. et al. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016. 108. P. 133503.
https://doi.org/10.1063/1.4945267
13. Oh S., Yang G. and Kim J. Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures. ECS J. Solid State Sci. Technol. 2017. 6. P. Q3022.
https://doi.org/10.1149/2.0041702jss
14. Yao Y., Gangireddy R., Kim J., Das K.K., Davis R.F. and Porter L.M. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J. Vac. Sci. Technol. B. 2017. 35. P. 03D113. https://doi.org/10.1116/1.4980042.
https://doi.org/10.1116/1.4980042
15. Ahmadi E., Oshima Y., Wu F. and Speck J.S. Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy. Semicond. Sci. Technol. 2017. 32. P. 035004. https://doi.org/10.1088/1361-6641/aa53a7.
https://doi.org/10.1088/1361-6641/aa53a7
16. Farzana E., Zhang Z., Paul P.K., Arehart A.R. and Ringel S.A. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 2017. 110. P. 20210.
https://doi.org/10.1063/1.4983610
17. He Q., Mu W., Dong H., Long S., Jia Z., Liu H.L.Q., Tang M., Tao X., and Liu M. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics. Appl. Phys. Lett. 2017. 110. P. 093503. https://doi.org/10.1063/1.4977766.
https://doi.org/10.1063/1.4977766
18. Konishi K., Goto K., Murakami H., Kumagai Y., Kuramata A., Yamakoshi S. and Higashiwaki M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017. 110. P. 103506.
https://doi.org/10.1063/1.4977857
19. Oshima T., Hashiguchi A., Moribayashi M. et al. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects. Jpn. J. Appl. Phys. 2017. 56. P.086501.
https://doi.org/10.7567/JJAP.56.086501
20. Yang J., Ren F., Khanna R. et al. Annealing of dry etch damage in metallized and bare () Ga2O3. J. Vac. Sci. Technol. B. 2017. 35. P. 051201. https://doi.org/10.1116/1.4986300.
https://doi.org/10.1116/1.4986300
21. Li A., Feng Q., Zhang J., Hu Z. et al. Investigation of temperature dependent electrical characteristics on Au/Ni/β-Ga2O3 Schottky diodes. Superlattices and Microstructures. 2018. 119. P. 212−217. https://doi.org/10.1016/j.spmi.2018.04.045.
https://doi.org/10.1016/j.spmi.2018.04.045
22. He Q., Mu W., Fu B., Jia Z. et al. Schottky barrier rectifier based on (100) β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Letters. 2018. 39. P. 556−559. https://doi.org/10.1109/LED.2018.2810858.
https://doi.org/10.1109/LED.2018.2810858
23. Jian G., He Q., Mu W., Fu B. et al. Characterization of the inhomogeneous barrier distribution in a Pt/(100) β−Ga2O3 Schottky diode via its tempera-ture-dependent electrical properties. AIP Advances. 2018. 8. P. 015316. https://doi.org/10.1063/1.5007197.
https://doi.org/10.1063/1.5007197
24. Fu H., Chen H., Huang X., Baranowski I. et al. A comparative study on the electrical properties of vertical () and (010) β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates. IEEE Trans. on Electron Devices. 2018. 65. P. 3507− 3513. https://doi.org/10.1109/TED.2018.2841904.
https://doi.org/10.1109/TED.2018.2841904
25. Yang J., Ren F., Tadjer M., Pearton S.J., and Kuramata A. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MWcm-2 figure-of-merit. AIP Advances. 2018. 8. P. 055026. https://doi.org/10.1063/1.5034444.
https://doi.org/10.1063/1.5034444
26. Latreche A. Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2019. 34. P. 025016. https://doi.org/10.1088/1361-6641/aaf8cb.
https://doi.org/10.1088/1361-6641/aaf8cb
27. Latreche A. Combination of thermionic emission and tunneling mechanisms to analyze the leakage current in 4H-SiC Schottky barrier diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. P. 19−25. https://doi.org/10.15407/spqeo22.01.20.
https://doi.org/10.15407/spqeo22.01.019
28. Chang C.Y., and Sze S.M. Carrier transport across metal-semiconductor barriers. Solid-State Electron. 1970. 13. P. 727−740. https://doi.org/10.1016/0038-1101(70)90060-2.
https://doi.org/10.1016/0038-1101(70)90060-2
29. Furno M., Bonani F. and Ghione G. Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron. 2007. 51. P. 466−474. https://doi.org/10.1016/j.sse.2007.01.028.
https://doi.org/10.1016/j.sse.2007.01.028
30. Rhoderick E.H. and Williams R.H. Metal-Semiconductor Contact. Oxford: Oxford University Press, 1988.
31. Eriksson J., Rorsman N. and Zirath H. 4H-silicon carbide Schottky barrier diodes for microwave applications. IEEE Trans. Microwave Theory Technol. 2003. 51. P. 796-804. https://doi.org/10.1109/TMTT.2003.808610.
https://doi.org/10.1109/TMTT.2003.808610
32. Tsu R. and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973. 22. P. 562-564. https://doi.org/10.1063/1.1654509.
https://doi.org/10.1063/1.1654509
33. Latreche A. and Ouennoughi Z. Modified Airy function method modeling of tunnelling current for Schottky barrier diodes on silicon carbide. Semicond. Sci. Technol. 2013. 28. P. 105003. https://doi.org/10.1088/0268-1242/28/10/105003.
https://doi.org/10.1088/0268-1242/28/10/105003
34. Zheng L., Joshi R.P. and Fazi C. Effects of barrier height fluctuations and electron tunnelling on the reverse characteristics of 6H-SiC Schottky contacts. J. Appl. Phys. 1999. 85. P. 3701-3707. https://doi.org/10.1063/1.369735.
https://doi.org/10.1063/1.369735
35. Padovani F.A. and Stratton R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 1962. 9. P. 695-707. https://doi.org/10.1016/0038-1101(66)90097-9.
https://doi.org/10.1016/0038-1101(66)90097-9
36. Latreche A. Validity of the Padovani-Stratton formulas for analysis of reverse current-voltage characteristics of 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2019. 34. P. 055021.
https://doi.org/10.1088/1361-6641/ab1191
37. He H., Orlando R., Blanco M.A. and Pandey R. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B. 2006. 74. P. 195123. https://doi.org/10.1103/PhysRevB.74.195123.
https://doi.org/10.1103/PhysRevB.74.195123
38. Hoeneisen B., Mead C.A. and Nicolet M.A. Permittivity of β-Ga2O3 at low frequencies. Solid-State Electron. 1971. 14. P. 1057-1059. https://doi.org/10.1016/0038-1101(71)90176-6.
https://doi.org/10.1016/0038-1101(71)90176-6
39. Passlack M., Hunt N.E.J., Schubert E.F., Zydzik G.J., Hong M., Mannaerts J.P., Opila R.L. and Fischer R.J. Dielectric properties of electron-beam deposited Ga2O3 films. Appl. Phys. Lett. 1994. 64. P. 2715-2717. https://doi.org/10.1063/1.111452.
https://doi.org/10.1063/1.111452
40. Latreche A. Combined thermionic emission and tunneling mechanisms for the analysis of the leakage current for Ga2O3 Schottky barrier diodes.