Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 397-403 (2019).
DOI:
https://doi.org/10.15407/spqeo22.04.397
References
1. Zhang Z., Farzana E., Arehart A.R. and Ringel S.A. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl. Phys. Lett. 2016. 108. P. 052105. https://doi.org/10.1063/1.4941429 | | 2. Higashiwaki M., Sasaki K., Kuramata A., Masui T. and Yamakoshi S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012. 100. P. 013504. https://doi.org/10.1063/1.3674287. https://doi.org/10.1063/1.3674287 | | 3. Fujita S. Wide-bandgap semiconductor materials: For their full bloom. Jpn. J. Appl. Phys. Part 1. 2015. 54. P. 030101. https://doi.org/10.7567/JJAP.54.030101. https://doi.org/10.7567/JJAP.54.030101 | | 4. Stepanov S.I., Nikolaev V.I., Bougrov V.E. and Romanov A.E. Gallium oxide: properties and applications - a review. Rev. Adv. Matter. Sci. 2016. 44. P. 63-86. | | 5. Pearton S.J., Jiancheng Yang J., Cary P.H. et al. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018. 5. P. 011301. https://doi.org/10.1063/1.5006941 | | 6. Víllora E.G., Arjoca S., Shimamura K., Inomata D., and Aoki K. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices. Proc SPIE, Oxide-based Materials and Devices. 2014. 8987. P. 89871U. https://doi.org/10.1117/12.2039305 | | 7. Kaun S.W., Wu F. and Speck J.S. β-(AlxGa1-x)2O3/ Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. A. 2015. 33. P. 041508. https://doi.org/10.1116/1.4922340. https://doi.org/10.1116/1.4922340 | | 8. Sasaki K., Higashiwaki M., Kuramata A., Masui T. and Yamakoshi S. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrate. IEEE Electron. Device Lett. 2013. 34. P. 493-495. https://doi.org/10.1109/LED.2013.2244057. https://doi.org/10.1109/LED.2013.2244057 | | 9. Oishi T., Koga Y., Harada K. and Kasu M. High-mobility β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express. 2015. 8. P. 031101. https://doi.org/10.7567/APEX.8.031101 | | 10. Jayawardena A., Ahyi A.C. and Dhar S. Analysis of temperature dependent forward characteristics of Ni/ β-Ga2O3 Schottky diodes. Semicond. Sci. Technol. 2016. 31. P. 115002. https://doi.org/10.1088/0268-1242/31/11/115002 | | 11. Higashiwaki M., Sasaki K., Murakami H. et al. Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 2016. 31. P. 034001. https://doi.org/10.1088/0268-1242/31/3/034001 | | 12. Higashiwaki M., Konishi K., Sasaki K. et al. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016. 108. P. 133503. https://doi.org/10.1063/1.4945267 | | 13. Oh S., Yang G. and Kim J. Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures. ECS J. Solid State Sci. Technol. 2017. 6. P. Q3022. https://doi.org/10.1149/2.0041702jss | | 14. Yao Y., Gangireddy R., Kim J., Das K.K., Davis R.F. and Porter L.M. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J. Vac. Sci. Technol. B. 2017. 35. P. 03D113. https://doi.org/10.1116/1.4980042. https://doi.org/10.1116/1.4980042 | | 15. Ahmadi E., Oshima Y., Wu F. and Speck J.S. Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy. Semicond. Sci. Technol. 2017. 32. P. 035004. https://doi.org/10.1088/1361-6641/aa53a7. https://doi.org/10.1088/1361-6641/aa53a7 | | 16. Farzana E., Zhang Z., Paul P.K., Arehart A.R. and Ringel S.A. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 2017. 110. P. 20210. https://doi.org/10.1063/1.4983610 | | 17. He Q., Mu W., Dong H., Long S., Jia Z., Liu H.L.Q., Tang M., Tao X., and Liu M. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics. Appl. Phys. Lett. 2017. 110. P. 093503. https://doi.org/10.1063/1.4977766. https://doi.org/10.1063/1.4977766 | | 18. Konishi K., Goto K., Murakami H., Kumagai Y., Kuramata A., Yamakoshi S. and Higashiwaki M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017. 110. P. 103506. https://doi.org/10.1063/1.4977857 | | 19. Oshima T., Hashiguchi A., Moribayashi M. et al. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects. Jpn. J. Appl. Phys. 2017. 56. P.086501. https://doi.org/10.7567/JJAP.56.086501 | | 20. Yang J., Ren F., Khanna R. et al. Annealing of dry etch damage in metallized and bare () Ga2O3. J. Vac. Sci. Technol. B. 2017. 35. P. 051201. https://doi.org/10.1116/1.4986300. https://doi.org/10.1116/1.4986300 | | 21. Li A., Feng Q., Zhang J., Hu Z. et al. Investigation of temperature dependent electrical characteristics on Au/Ni/β-Ga2O3 Schottky diodes. Superlattices and Microstructures. 2018. 119. P. 212−217. https://doi.org/10.1016/j.spmi.2018.04.045. https://doi.org/10.1016/j.spmi.2018.04.045 | | 22. He Q., Mu W., Fu B., Jia Z. et al. Schottky barrier rectifier based on (100) β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Letters. 2018. 39. P. 556−559. https://doi.org/10.1109/LED.2018.2810858. https://doi.org/10.1109/LED.2018.2810858 | | 23. Jian G., He Q., Mu W., Fu B. et al. Characterization of the inhomogeneous barrier distribution in a Pt/(100) β−Ga2O3 Schottky diode via its tempera-ture-dependent electrical properties. AIP Advances. 2018. 8. P. 015316. https://doi.org/10.1063/1.5007197. https://doi.org/10.1063/1.5007197 | | 24. Fu H., Chen H., Huang X., Baranowski I. et al. A comparative study on the electrical properties of vertical () and (010) β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates. IEEE Trans. on Electron Devices. 2018. 65. P. 3507− 3513. https://doi.org/10.1109/TED.2018.2841904. https://doi.org/10.1109/TED.2018.2841904 | | 25. Yang J., Ren F., Tadjer M., Pearton S.J., and Kuramata A. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MWcm-2 figure-of-merit. AIP Advances. 2018. 8. P. 055026. https://doi.org/10.1063/1.5034444. https://doi.org/10.1063/1.5034444 | | 26. Latreche A. Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2019. 34. P. 025016. https://doi.org/10.1088/1361-6641/aaf8cb. https://doi.org/10.1088/1361-6641/aaf8cb | | 27. Latreche A. Combination of thermionic emission and tunneling mechanisms to analyze the leakage current in 4H-SiC Schottky barrier diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. P. 19−25. https://doi.org/10.15407/spqeo22.01.20. https://doi.org/10.15407/spqeo22.01.019 | | 28. Chang C.Y., and Sze S.M. Carrier transport across metal-semiconductor barriers. Solid-State Electron. 1970. 13. P. 727−740. https://doi.org/10.1016/0038-1101(70)90060-2. https://doi.org/10.1016/0038-1101(70)90060-2 | | 29. Furno M., Bonani F. and Ghione G. Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron. 2007. 51. P. 466−474. https://doi.org/10.1016/j.sse.2007.01.028. https://doi.org/10.1016/j.sse.2007.01.028 | | 30. Rhoderick E.H. and Williams R.H. Metal-Semiconductor Contact. Oxford: Oxford University Press, 1988. | | 31. Eriksson J., Rorsman N. and Zirath H. 4H-silicon carbide Schottky barrier diodes for microwave applications. IEEE Trans. Microwave Theory Technol. 2003. 51. P. 796-804. https://doi.org/10.1109/TMTT.2003.808610. https://doi.org/10.1109/TMTT.2003.808610 | | 32. Tsu R. and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973. 22. P. 562-564. https://doi.org/10.1063/1.1654509. https://doi.org/10.1063/1.1654509 | | 33. Latreche A. and Ouennoughi Z. Modified Airy function method modeling of tunnelling current for Schottky barrier diodes on silicon carbide. Semicond. Sci. Technol. 2013. 28. P. 105003. https://doi.org/10.1088/0268-1242/28/10/105003. https://doi.org/10.1088/0268-1242/28/10/105003 | | 34. Zheng L., Joshi R.P. and Fazi C. Effects of barrier height fluctuations and electron tunnelling on the reverse characteristics of 6H-SiC Schottky contacts. J. Appl. Phys. 1999. 85. P. 3701-3707. https://doi.org/10.1063/1.369735. https://doi.org/10.1063/1.369735 | | 35. Padovani F.A. and Stratton R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 1962. 9. P. 695-707. https://doi.org/10.1016/0038-1101(66)90097-9. https://doi.org/10.1016/0038-1101(66)90097-9 | | 36. Latreche A. Validity of the Padovani-Stratton formulas for analysis of reverse current-voltage characteristics of 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2019. 34. P. 055021. https://doi.org/10.1088/1361-6641/ab1191 | | 37. He H., Orlando R., Blanco M.A. and Pandey R. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B. 2006. 74. P. 195123. https://doi.org/10.1103/PhysRevB.74.195123. https://doi.org/10.1103/PhysRevB.74.195123 | | 38. Hoeneisen B., Mead C.A. and Nicolet M.A. Permittivity of β-Ga2O3 at low frequencies. Solid-State Electron. 1971. 14. P. 1057-1059. https://doi.org/10.1016/0038-1101(71)90176-6. https://doi.org/10.1016/0038-1101(71)90176-6 | | 39. Passlack M., Hunt N.E.J., Schubert E.F., Zydzik G.J., Hong M., Mannaerts J.P., Opila R.L. and Fischer R.J. Dielectric properties of electron-beam deposited Ga2O3 films. Appl. Phys. Lett. 1994. 64. P. 2715-2717. https://doi.org/10.1063/1.111452. https://doi.org/10.1063/1.111452 | | 40. Latreche A. Combined thermionic emission and tunneling mechanisms for the analysis of the leakage current for Ga2O3 Schottky barrier diodes. | |
|
|