Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 404-409 (2019).
DOI:
https://doi.org/10.15407/spqeo22.04.404
References
1. Cheng Y. C., Wu X.L., Zhu J., Xu L.L., Li, S.H. Chu Paul K. Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations. J. Appl. Phys. 2008. 103. P. 073707. https://doi.org/10.1063/1.2903138 | | 2. Sajjad M., Alay-e-Abbas S.M., Zhang H.X. et al. First principles study of structural, elastic, electronic and magnetic properties of Mn-doped AlY (Y = N, P, As) compounds. J. Magn. Magn. Mater. 2015. 390. P 78-86. https://doi.org/10.1016/j.jmmm.2015.04.065 | | 3. Xia H., Xia Q., Ruoff A.L. High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition. Phys. Rev. B. 1993. 47. P. 12925. https://doi.org/10.1103/PhysRevB.47.12925. https://doi.org/10.1103/PhysRevB.47.12925 | | 4. Sahoo B.K. Effect of piezoelectric polarization on phonon group velocity in nitride wurtzites. J. Mater. Sci. 2012. 47, Issue 6. P. 2624-2629. https://doi.org/10.1007/s10853-011-6087-2 | | 5. Van Schilfgaarde M., Sher A., Chen A.B. Theory of AlN, GaN, InN and their alloys. J. Cryst. Growth. 1997. 178 (1-2). P. 8-31. https://doi.org/10.1016/S0022-0248(97)00073-0 | | 6. Sherwin M.E., Drummond T.J. Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β-SiC. J. Appl. Phys. 1991. 69. P. 8423. https://doi.org/10.1063/1.347412 | | 7. Serrano J., Rubio A., Hernández E., Muñoz A., Mujica A. Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures. Phys. Rev. B. 2000. 62. P. 16612. https://doi.org/10.1103/PhysRevB.62.16612 | | 8. Ghebouli B., Ghebouli M.A., Fatmi M. Theoretical studies of structural, elastic, electronic and lattice dynamic properties of AlxYyB1−x−yN quaternary alloys. Physica B: Condensed Matter. 2011. 406, No 13. P. 2521-2527. https://doi.org/10.1016/j.physb.2011.03.047 | | 9. Louhibi-Fasla S., Achour H., Kefif K., Ghalem Y. First-principles study of high-pressure phases of AlN. Phys. Procedia. 2014. 55. P. 324-328. https://doi.org/10.1016/j.phpro.2014.07.047. https://doi.org/10.1016/j.phpro.2014.07.047 | | 10. Daoud S., Bouarissa N. Structural and thermodynamic properties of cubic sphalerite aluminum nitride under hydrostatic compression. Comput. Condens. Matter. 2019. 19. P. e00359. https://doi.org/10.1016/j.cocom.2018.e00359. https://doi.org/10.1016/j.cocom.2018.e00359 | | 11. Saib S., Bouarissa N. Structural properties of AlN from first principles calculations. Eur. Phys. J. B. 2005. 47, No 3. P. 379. https://doi.org/10.1140/epjb/e2005-00347-4 | | 12. Sarwan M., and Singh S. Structural, elastic and mechanical properties of group III-nitrides in zinc-blende structure. J. Alloys. Compound. 2013. 550. P. 150-158. https://doi.org/10.1016/j.jallcom.2012.09.097. https://doi.org/10.1016/j.jallcom.2012.09.097 | | 13. Goumri-Said S., Kanoun M.B., Merad A.E., Merad Gh., Aourag H. Prediction of structural and thermodynamic properties of zinc-blende AlN: molecular dynamics simulation. Chem. Phys. 2004. 302, No 1-3. P. 35-141. https://doi.org/10.1016/j.chemphys.2004.03.030 | | 14. Ramírez-Montes L., López-Pérez W., González-García A., González-Hernández R. Structural, optoelectronic, and thermodynamic properties of YxAl1−xN semiconducting alloys. J. Mater. Sci. 2016. 51, No 6. P. 2817-2829. https://doi.org/10.1007/s10853-015-9590-z | | 15. Saib S., Bouarissa N. Electronic properties and elastic constants of wurtzite, zinc-blende and rocksalt AlN. J. Phys. Chem. Solids. 2006. 67, Issue 8. P. 1888-1892. https://doi.org/10.1016/j.jpcs.2006.05.007 | | 16. Yang R., Zhu C., Wie Q., Duy Z. Phase stability, mechanical and optoelectronic properties of two novel phases of AlN. Mod. Phys. Lett. B. 2017. 31, Issue 18. P. 1750201. https://doi.org/10.1142/S0217984917502013. https://doi.org/10.1142/S0217984917502013 | | 17. Tan X., Xin Z.Y., Liu X.J., Mu Q.G. First-principles study on elastic properties of AlN. Adv. Mat. Res. 2013. 821-822. P. 841. https://doi.org/10.4028/www.scientific.net/AMR.821-822.841. https://doi.org/10.4028/www.scientific.net/AMR.821-822.841 | | 18. Yaddanapudi K. First-principles study of structural phase transformation and dynamical stability of cubic AlN semiconductors. AIP Advances. 2018. 8. P. 125006. https://doi.org/10.1063/1.5054697. https://doi.org/10.1063/1.5054697 | | 19. Daoud S., Bouarissa N. Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure. Theoretical Chemistry Accounts. 2019. 138, Issue 4. Article 49. https://doi.org/10.1007/s00214-019-2439-9 | | 20. Rastogi A., Rajpoot P., Verma U.P. Properties of group III-V semiconductor: BAs. Bull. Mater. Sci. 2019. 42, No 3. P. 112. https://doi.org/10.1007/s12034-019-1758-8. https://doi.org/10.1007/s12034-019-1758-8 | | 21. Jiao Zhao-Yong, Ma Shu-Hong, Wang Tian-Xing & Yang Ji-Fei. Theoretical investigation of the elastic, electronic, thermodynamic and optical properties of the zinc-blende structure AlN under high pressure. Mol. Phys. 2010. 108, No 12. P. 1641-1648. https://doi.org/10.1080/00268976.2010.489516. https://doi.org/10.1080/00268976.2010.489516 | | 22. Marmalyuk A.A., Akchurin R.Kh., Gorbylev V.A. Theoretical calculation of the Debye temperature and temperature dependence of heat capacity of aluminum, gallium, and indium nitrides. High Temperature. 1998. 36, No 5. P. 817-819. | | 23. Yadav D.S., Singh S.P. Static and dynamical properties of II-IV and III-V group binary solids. Phys. Scr. 2012. 85. P. 015701 (6 pp.). https://doi.org/10.1088/0031-8949/85/01/015701. https://doi.org/10.1088/0031-8949/85/01/015701 | | 24. Xu L., Bu W. Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds. Int. J. Mod. Phys. B. 2017. 31, No 23. P. 1750167. https://doi.org/10.1142/S0217979217501673. https://doi.org/10.1142/S0217979217501673 | | 25. Kumar V., Jha V., Shrivastava A.K. Debye temperature and melting point of II-VI and III-V semiconductors. Cryst. Res. Technol. 2010. 45, No 9. P. 920-924. https://doi.org/10.1002/crat.201000268. https://doi.org/10.1002/crat.201000268 | | 26. Wang S.Q. Studies on thermodynamic properties of III-V compounds by first-principles response-function calculation. phys. status solidi (b). 2009. 246, No 7. P. 1618-1627. https://doi.org/10.1002/pssb.200844379. https://doi.org/10.1002/pssb.200844379 | | 27. Daoud S. Simplified expressions for calculating Debye temperature and melting point of II-VI and III-V semiconductors. Intern. Journal of Scientific World. 2015. 3, No 2. P. 275-279. https://doi.org/10.14419/ijsw.v3i2.5314 | | 28. Morelli D.T., Slack G.A. High lattice thermal conductivity solids, In: High Thermal Conductivity Materials. Eds. S.L. Shindé, J.S. Goela. Springer, New York, 2006. P. 37-68. https://doi.org/10.1007/0-387-25100-6_2 | | 29. Daoud S., Bioud N., Lebga N. Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure. Journal of Central South University of Technology. 2014. 21. P. 58-64. http://link.springer.com/article/10.1007/s11771-014-1915-6. https://doi.org/10.1007/s11771-014-1915-6 | | 30. Bruce D.W., O'Hare D. and Walton R.I. (Eds.) Multi Length-Scale Characterisation. John Wiley & Sons, Ltd, 2014. P. 95. https://doi.org/10.1002/9781118683972 | | 31. Adachi S. Properties of Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons, Chichester, 2005. http://dx.doi.org/10.1002/0470090340. https://doi.org/10.1002/0470090340 | | 32. AlShaikhi A., Srivastava G.P. Theoretical investigations of phonon intrinsic mean free path in zincblende and wurtzite AlN. Phys. Rev. B. 2007. 76. P. 195205(1-7). https://doi.org/10.1103/PhysRevB.76.195205. https://doi.org/10.1103/PhysRevB.76.195205 | | 33. Gajaria T.K., Dabhi S.D., Jha P.K. ab initio energetics and thermoelectric profiles of gallium pnictide polytypes. Scientific Reports. 2019. 9. Art. Number 5884. https://doi.org/10.1038/s41598-019-41982-9 | | 34. Litimein F., Bouhafs B., Dridi Z., Ruterana P. The electronic structure of wurtzite and zincblende AlN: An ab initio comparative study. New J. Phys. 2002. 4, No 1. P. 64. https://doi.org/10.1088/1367-2630/4/1/364 | | 35. Martienssen W., Main F. Semiconductors, in: Springer Handbook of Condensed Matter and Materials Data. Eds. W. Martienssen, H. Warlimont. Springer, Berlin, Heidelberg, New York, 2005. P. 575-694. https://doi.org/10.1007/3-540-30437-1_9 | | 36. Goldberg Y. Aluminum Nitride (AIN), in: Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Eds. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. John Wiley & Sons, Inc., New York, 2001. P. 31-47. | | 37. Wang S.Q., Ye H.Q. First-principles study on elastic properties and phase stability of III-V compounds. phys. status solidi (b). 2003. 240, No 1. P. 45-54. https://doi.org/10.1002/pssb.200301861. https://doi.org/10.1002/pssb.200301861 | | 38. Bouhemadou A., Allali D., Bin-Omran S. et al. Elastic and thermodynamic properties of the SiB2O4 (B = Mg, Zn and Cd) cubic spinels: An ab initio FP-LAPW study. Mater. Sci. Semicond. Process. 2015. 38. P. 192-202. https://doi.org/10.1016/j.mssp.2015.04.021. https://doi.org/10.1016/j.mssp.2015.04.021 | | 39. Bahadur A., Mishra M. Dependence of ionicity and mechanical properties on valence electron density in binary tetrahedral semiconductors. J. Res. Phys. 2012. 36, P. 31-42. http://archive.sciendo.com/JRP/jrp.2012.36.issue-1/v10242-012-0011-1/v10242-012-0011-1.pdf. https://doi.org/10.2478/v10242-012-0011-1 | | 40. Yonenaga I., Shima T., Sluiter M.H. Nano-indentation hardness and elastic moduli of bulk single-crystal AlN. Jpn. J. Appl. Phys. 2002. 41, Part 1, Number 7A. P. 4620-4621. https://doi.org/10.1143/JJAP.41.4620 | | 41. Chen X.Q., Niu H., Li D., Li Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011. 19, No 9. 1275. P. 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026. https://doi.org/10.1016/j.intermet.2011.03.026 | | 42. Zagorac J., Zagorac D., Jovanović D., Luković J., Matović B. Ab initio investigations of structural, electronic and mechanical properties of aluminum nitride at standard and elevated pressures. J. Phys. Chem. Solids. 2018. 122. P. 94-103. https://doi.org/10.1016/j.jpcs.2018.06.020. https://doi.org/10.1016/j.jpcs.2018.06.020 | | 43. Böer K.W., Pohl U.W. Semiconductor Physics. Springer International Publishing AG, Switzerland, 2018. | |
|
|