Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 410-417 (2019).
DOI: https://doi.org/10.15407/spqeo22.410


References

1. Catchpole K. and Polman A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008. 93, No 19. P. 191113. https://doi.org/10.1063/1.3021072.
https://doi.org/10.1063/1.3021072
2. Atwater H.A. and Polman A. Plasmonics for improved photovoltaic devices. Nature Materials. 2010. 9, No 3. P. 205-213. https://doi.org/10.1038/nmat2629.
https://doi.org/10.1038/nmat2629
3. Battaglia C., Hsu C.-M., Söderström K. et al. Light trapping in solar cells: Can periodic beat random? ACS Nano. 2012. 6, No 3. P. 2790-2797. https://doi.org/10.1021/nn300287j.
https://doi.org/10.1021/nn300287j
4. Campbell P. and Green M.A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 1987. 62. P. 243. https://doi.org/10.1063/1.339189.
https://doi.org/10.1063/1.339189
5. Wang C., Yu S., Chen W., and Sun C. Highly efficient light-trapping structure design inspired by natural evolution. Sci. Rep. 2013. 3. P. 1025. https://doi.org/10.1038/srep01025.
https://doi.org/10.1038/srep01025
6. Catchpole K.R. and Pillai S. Absorption enhance-ment due to scattering by dipoles into silicon waveguides. J. Appl. Phys. 2006. 100. P. 044504. https://doi.org/10.1063/1.2226334.
https://doi.org/10.1063/1.2226334
7. Pillai S., Catchpole K.R., Trupke T., and Green M.A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 2007. 101. P. 093105. https://doi.org/10.1063/1.2734885.
https://doi.org/10.1063/1.2734885
8. Ferry V.E., Sweatlock L.A., Pacifici D., and Atwater H.A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 2008. 8, No 12. P. 4391-4397. https://doi.org/10.1021/nl8022548.
https://doi.org/10.1021/nl8022548
9. Wang W., Wu S., Reinhardt K., Lu Y., and Chen S. Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett. 2010. 10, No 6. P. 2012-2018. https://doi.org/10.1021/nl904057p.
https://doi.org/10.1021/nl904057p
10. Nakayama K. Tanabe K., and Atwater H.A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008. 93. P. 121904. https://doi.org/10.1063/1.2988288.
https://doi.org/10.1063/1.2988288
11. Mokkapati S., Beck F.J., Polman A., and Catchpole K.R. Designing periodic arrays of metal nano-particles for light-trapping applications in solar cells. Appl. Phys. Lett. 2009. 95, 053115. https://doi.org/10.1063/1.3200948.
https://doi.org/10.1063/1.3200948
12. Sun C. and Wang X.Q. Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics. 2015. 10, No 6. P. 1307-1314.
https://doi.org/10.1007/s11468-015-9934-1
13. Hajimirza Sh., Howell J.R. Robust nanoscale patterns for thin film solar cells using inverse optimization of nonuniformly sampled absorption spectrum. Proc. ASME 2011 International Mechanical Engineering Congress & Exposition, IMECE2011, November 11-17, 2011, Denver, Colorado, USA, IMECE2011-62803.
14. Johnson P.B. and Christy R.W. Optical constants of the noble metals. Phys. Rev. B. 1972. 6. P. 4370. https://doi.org/10.1103/PhysRevB.6.4370.
https://doi.org/10.1103/PhysRevB.6.4370
15. Lozovski V.Z., Lienau C., Tarasov G.G., Vasyliev T.A., Zhuchenko Z.Ya. Configurational resonances in absorption of metal nanoparticles seeded onto a semiconductor surface. Results in Physics. 2019. 12. P. 1197-1201. https://doi.org/10.1016/j.rinp.2018.12.091.
https://doi.org/10.1016/j.rinp.2018.12.091
16. Lozovski V., Vasilenko V., Tarasov G.G., Lienau C., Mazur Yu.I., and Salamo G.J. Dynamic configurational resonances caused by optical nonlinearities in ultra-fast near-field microscopy. J. Opt. 2013. 15. P. 035204 (13 p.). https://doi.org/10.1088/2040-8978/15/3/035204.
https://doi.org/10.1088/2040-8978/15/3/035204
17. Mills D.L. and Maradudin A.A. Surface roughness and the optical properties of a semi-infinite material; the effect of a dielectric overlayer. Phys. Rev. B. 1975. 12. P. 2943. https://doi.org/10.1103/PhysRevB.12.2943.
https://doi.org/10.1103/PhysRevB.12.2943
18. Bah M.L., Akjouj A., Dobrzynski L. Response functions in layered dielectric media. Surf. Sci. Rept. 1992. 16. 97-131. https://doi.org/10.1016/0167-5729(92)90010-9.
https://doi.org/10.1016/0167-5729(92)90010-9
19. Lozovski V.Z. The effective susceptibility concept in the electrodynamics of nano-systems. J. Compu-tation. and Theor. Nanosci. 2010. 7, No 10. P. 2077 -2093. https://doi.org/10.1166/jctn.2010.1588.
https://doi.org/10.1166/jctn.2010.1588
20. Evlyukhin A.B. and Bozhevolnyi S.I. Surface plasmon polariton scattering by small ellipsoid particles. Surf. Sci. 2005. 590. P. 173-180. https://doi.org/10.1016/j.susc.2005.06.010.
https://doi.org/10.1016/j.susc.2005.06.010
21. Sönnichsen C., Franzl T., Wilk T. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 2002. 88. P. 077402. https://doi.org/10.1103/PhysRevLett.88.077402.
https://doi.org/10.1103/PhysRevLett.88.077402
22. Schaadt D.M., Feng B., and Yu E.T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005. 86. P. 063106. https://doi.org/10.1063/1.1855423.
https://doi.org/10.1063/1.1855423
23. Boyd S. and Vandenberghe L. Convex Optimi-zation. Cambridge University Press, 2004.
https://doi.org/10.1017/CBO9780511804441