Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 430-436 (2019).
DOI:
https://doi.org/10.15407/spqeo22.04.430
References
1. Dongarra J.J. Performance of Various Computers Using Standard Linear Equations Software. Oak Ridge National Laboratory. 2014. P. 1-110. http://netlib.org/benchmark/performance.pdf. | | 2. Rayleigh J.W.S. On the maintenance of vibrations by forces of double frequency and on the propaga-tion of waves through a medium endowed with a periodic structure. Phil. Mag. 1887. 24(147). P. 145 -159. https://doi.org/10.1080/14786448708628074. https://doi.org/10.1080/14786448708628074 | | 3. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987. 58, No 20. P. 2059-2062. https://doi.org/10.1103/PhysRevLett.58.2059. https://doi.org/10.1103/PhysRevLett.58.2059 | | 4. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987. 58, No 23. P. 2486-2489. https://doi.org/10.1103/PhysRevLett.58.2486. https://doi.org/10.1103/PhysRevLett.58.2486 | | 5. Werber A., Zappe H. Tunable, membrane-based, pneumatic micro-mirrors. J. Opt. A: Pure Appl. Opt. 2006. 8. P. 313-317. https://doi.org/10.1109/OMEMS.2005.1540115. https://doi.org/10.1109/OMEMS.2005.1540115 | | 6. Pervak V., Ahmad I., Trubetskov M.K., Tikho-nravov A.V., Krausz F. Double-angle multilayer mirrors with smooth dispersion characteristics. Opt. Exp. 2009. 17, No 10. P. 7943-7951. https://doi.org/10.1364/OE.17.007943. https://doi.org/10.1364/OE.17.007943 | | 7. Tokranova N., Xu B., Castracane J. Fabrication of flexible one-dimensional porous silicon photonic band-gap structures. MRS Proc. 2004. 797. https://doi.org/10.1557/PROC-797-W1.3. https://doi.org/10.1557/PROC-797-W1.3 | | 8. Grzybowski B., Qin D., Haag R., Whitesides G.M. Elastomeric optical elements with deformable sur-face topographies: applications to force measure-ments, tunable light transmission and light focusing. Sensors and Actuators. 2000. 86, No 1-2. P. 81-85. https://doi.org/10.1016/S0924-4247(00)00421-0. https://doi.org/10.1016/S0924-4247(00)00421-0 | | 9. Ouellette J. Seeing the future in photonic crystals. The Industrial Physicist. 2002. 7, No 6. P. 14-17. | | 10. Sakoda K. Optical Properties of Photonic Crystals. Berlin. Springer Verlag, 2001. https://doi.org/10.1007/978-3-662-14324-7 | | 11. Winn N.Y., Fink S., Fan Y., and Joannopoulos J.D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 1998. 23. P. 1573-1575. https://doi.org/10.1364/OL.23.001573. https://doi.org/10.1364/OL.23.001573 | | 12. Deopura M., Ullal C.K., Temelkuran B., and Fink Y. Dielectric omnidirectional visible reflector. Opt. Lett. 2001. 26. P. 1197-1199. https://doi.org/10.1364/OL.26.001197. https://doi.org/10.1364/OL.26.001197 | | 13. Loncar M., Doll T., Vuchkovich J., Scherer A. Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 2000. 18. P. 1402. http://resolver.caltech.edu/ CaltechAUTHORS:LONjlt00. https://doi.org/10.1109/50.887192 | | 14. Loncar M., Nedeljkovic D., Doll T., Vuckovjc J., Scherer A., and Pearsall T.P. Waveguiding in planar photonic crystals. Appl. Phys. Lett. 2000. 77, No 13. P. 1937-1939. https://doi.org/10.1063/1.1311604. https://doi.org/10.1063/1.1311604 | | 15. Kawai N., Inoue K., Carlsson N., Ikeda N., Sugimoto Y., Asakawa K., Takemori T. Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal. Phys. Rev. Lett. 2001. 86. P. 2289-2292. https://doi.org/10.1103/PhysRevLett.86.2289. https://doi.org/10.1103/PhysRevLett.86.2289 | | 16. Shi J., Juluri B.K., Lin S.C.S., Lu M., Gao T., Huang T.J. Photonic crystal composites-based wide-band optical collimator. J. Appl. Phys. 2010. 108. P. 043514 (6 p.). https://doi.org/10.1063/1.3468242. https://doi.org/10.1063/1.3468242 | | 17. Patent WO № 2007094845, USA. All-optical logic gates using nonlinear elements - A1, Aug 23 2007, COVEYTECH LLC (US). | | 18. Rani P., Kalra Y., Sinha R.K. Design of photonic crystal architecture for optical logic AND gates. Proc. SPIE. 2013. 8847, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII. P. 88470X. https://doi.org/10.1117/12.2023855. https://doi.org/10.1117/12.2023855 | | 19. Glushko E.Ya. All-optical signal processing in photonic structures with nonlinearity. Opt. Commun. 2005. 247. P. 275-280. https://doi.org/10.1016/j.optcom.2004.11.096. https://doi.org/10.1016/j.optcom.2004.11.096 | | 20. Glushko E.Ya. Island kind 2D photonic crystal resonator. Ukr. Phys. J. 2017. 62, No 11. P. 939-946. https://doi.org/10.15407/ujpe62.11.0945 | | 21. Glushko E.Ya. Pneumatic photonic crystals. Opt. Exp. 2010. 18, No 3. P. 3071-3078. https://doi.org/10.1364/OE.18.003071. https://doi.org/10.1364/OE.18.003071 | | 22. Glushko E.Ya. The conception of scales echeloning for precise optical indication of pressure and temperature. 11th Intern. Conf. on Laser and Fiber-Optical Networks Modeling (LFNM), 2011. P. 1-3. https://doi.org/10.1109/LFNM.2011.6144974. https://doi.org/10.1109/LFNM.2011.6144974 | | 23. Landau L.D., Lifshitz E.M. Theory of Elasticity. New York, Pergamon Press, 1970. | | 24. Turyshev S.G., Toth V.T. The Pioneer Anomaly. Living Rev. Relativity. 2010. 13. P. 4-175. https://doi.org/10.12942/lrr-2010-4. https://doi.org/10.12942/lrr-2010-4 | | 25. Glushko E.Ya., Stepanyuk A.N. A pneumatic pho-tonic structure and precise optical indication of pressure over time inside the fluid flow. Int. J. Biosen. & Bioelectron. 2018. 4, No 3. P. 99-102. http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/2896. https://doi.org/10.15406/ijbsbe.2018.04.00107 | |
|
|