Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 430-436 (2019).
DOI: https://doi.org/10.15407/spqeo22.04.430


References

1. Dongarra J.J. Performance of Various Computers Using Standard Linear Equations Software. Oak Ridge National Laboratory. 2014. P. 1-110. http://netlib.org/benchmark/performance.pdf.
2. Rayleigh J.W.S. On the maintenance of vibrations by forces of double frequency and on the propaga-tion of waves through a medium endowed with a periodic structure. Phil. Mag. 1887. 24(147). P. 145 -159. https://doi.org/10.1080/14786448708628074.
https://doi.org/10.1080/14786448708628074
3. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987. 58, No 20. P. 2059-2062. https://doi.org/10.1103/PhysRevLett.58.2059.
https://doi.org/10.1103/PhysRevLett.58.2059
4. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987. 58, No 23. P. 2486-2489. https://doi.org/10.1103/PhysRevLett.58.2486.
https://doi.org/10.1103/PhysRevLett.58.2486
5. Werber A., Zappe H. Tunable, membrane-based, pneumatic micro-mirrors. J. Opt. A: Pure Appl. Opt. 2006. 8. P. 313-317. https://doi.org/10.1109/OMEMS.2005.1540115.
https://doi.org/10.1109/OMEMS.2005.1540115
6. Pervak V., Ahmad I., Trubetskov M.K., Tikho-nravov A.V., Krausz F. Double-angle multilayer mirrors with smooth dispersion characteristics. Opt. Exp. 2009. 17, No 10. P. 7943-7951. https://doi.org/10.1364/OE.17.007943.
https://doi.org/10.1364/OE.17.007943
7. Tokranova N., Xu B., Castracane J. Fabrication of flexible one-dimensional porous silicon photonic band-gap structures. MRS Proc. 2004. 797. https://doi.org/10.1557/PROC-797-W1.3.
https://doi.org/10.1557/PROC-797-W1.3
8. Grzybowski B., Qin D., Haag R., Whitesides G.M. Elastomeric optical elements with deformable sur-face topographies: applications to force measure-ments, tunable light transmission and light focusing. Sensors and Actuators. 2000. 86, No 1-2. P. 81-85. https://doi.org/10.1016/S0924-4247(00)00421-0.
https://doi.org/10.1016/S0924-4247(00)00421-0
9. Ouellette J. Seeing the future in photonic crystals. The Industrial Physicist. 2002. 7, No 6. P. 14-17.
10. Sakoda K. Optical Properties of Photonic Crystals. Berlin. Springer Verlag, 2001.
https://doi.org/10.1007/978-3-662-14324-7
11. Winn N.Y., Fink S., Fan Y., and Joannopoulos J.D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 1998. 23. P. 1573-1575. https://doi.org/10.1364/OL.23.001573.
https://doi.org/10.1364/OL.23.001573
12. Deopura M., Ullal C.K., Temelkuran B., and Fink Y. Dielectric omnidirectional visible reflector. Opt. Lett. 2001. 26. P. 1197-1199. https://doi.org/10.1364/OL.26.001197.
https://doi.org/10.1364/OL.26.001197
13. Loncar M., Doll T., Vuchkovich J., Scherer A. Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 2000. 18. P. 1402. http://resolver.caltech.edu/ CaltechAUTHORS:LONjlt00.
https://doi.org/10.1109/50.887192
14. Loncar M., Nedeljkovic D., Doll T., Vuckovjc J., Scherer A., and Pearsall T.P. Waveguiding in planar photonic crystals. Appl. Phys. Lett. 2000. 77, No 13. P. 1937-1939. https://doi.org/10.1063/1.1311604.
https://doi.org/10.1063/1.1311604
15. Kawai N., Inoue K., Carlsson N., Ikeda N., Sugimoto Y., Asakawa K., Takemori T. Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal. Phys. Rev. Lett. 2001. 86. P. 2289-2292. https://doi.org/10.1103/PhysRevLett.86.2289.
https://doi.org/10.1103/PhysRevLett.86.2289
16. Shi J., Juluri B.K., Lin S.C.S., Lu M., Gao T., Huang T.J. Photonic crystal composites-based wide-band optical collimator. J. Appl. Phys. 2010. 108. P. 043514 (6 p.). https://doi.org/10.1063/1.3468242.
https://doi.org/10.1063/1.3468242
17. Patent WO № 2007094845, USA. All-optical logic gates using nonlinear elements - A1, Aug 23 2007, COVEYTECH LLC (US).
18. Rani P., Kalra Y., Sinha R.K. Design of photonic crystal architecture for optical logic AND gates. Proc. SPIE. 2013. 8847, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII. P. 88470X. https://doi.org/10.1117/12.2023855.
https://doi.org/10.1117/12.2023855
19. Glushko E.Ya. All-optical signal processing in photonic structures with nonlinearity. Opt. Commun. 2005. 247. P. 275-280. https://doi.org/10.1016/j.optcom.2004.11.096.
https://doi.org/10.1016/j.optcom.2004.11.096
20. Glushko E.Ya. Island kind 2D photonic crystal resonator. Ukr. Phys. J. 2017. 62, No 11. P. 939-946.
https://doi.org/10.15407/ujpe62.11.0945
21. Glushko E.Ya. Pneumatic photonic crystals. Opt. Exp. 2010. 18, No 3. P. 3071-3078. https://doi.org/10.1364/OE.18.003071.
https://doi.org/10.1364/OE.18.003071
22. Glushko E.Ya. The conception of scales echeloning for precise optical indication of pressure and temperature. 11th Intern. Conf. on Laser and Fiber-Optical Networks Modeling (LFNM), 2011. P. 1-3. https://doi.org/10.1109/LFNM.2011.6144974.
https://doi.org/10.1109/LFNM.2011.6144974
23. Landau L.D., Lifshitz E.M. Theory of Elasticity. New York, Pergamon Press, 1970.
24. Turyshev S.G., Toth V.T. The Pioneer Anomaly. Living Rev. Relativity. 2010. 13. P. 4-175. https://doi.org/10.12942/lrr-2010-4.
https://doi.org/10.12942/lrr-2010-4
25. Glushko E.Ya., Stepanyuk A.N. A pneumatic pho-tonic structure and precise optical indication of pressure over time inside the fluid flow. Int. J. Biosen. & Bioelectron. 2018. 4, No 3. P. 99-102. http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/2896.
https://doi.org/10.15406/ijbsbe.2018.04.00107