Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 457-469 (2019).
DOI:
https://doi.org/10.15407/spqeo22.04.457
References
1. Abbot C.G. Terrestrial temperature and atmospheric absorption. Proc. Natl. Acad. Sci. USA, 1918. 4. P. 104-106. https://doi.org/10.1073/pnas.4.4.104 | | 2. Dimitriev O.P. Global energy consumption rates: where is the limit? Sustainable Energy. 2013. 1. P. 1-6. https://doi.org/10.12691/rse-1-1-1. | | 3. Richards P.L. Bolometers for infrared and milli-meter waves. J. Appl. Phys. 1994. 76. P. 1-36. https://doi.org/10.1063/1.357128. https://doi.org/10.1063/1.357128 | | 4. Efetov D.K., Shiue Ren-Jye, Gao Yuanda et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nature Nanotechn. 2018. 13. P. 797-801. https://doi.org/10.1038/s41565-018-0169-0 | | 5. Kouchachvili L., Ikura M. Pyroelectric conversion -effects of P(VDF-TrFE) preconditioning on power conversion. J. Electrostatics. 2007. 65, No 3. P. 182 -188. https://doi.org/10.1016/j.elstat.2006.07.014. https://doi.org/10.1016/j.elstat.2006.07.014 | | 6. US Patent 4647836, US Patent 6528898, US Patent 5644184. | | 7. Li J.F., Liu W.S., Zhao L.D., Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010. 2. P. 152-158. https://doi.org/10.1038/asiamat.2010.138 | | 8. Kanatzidis M. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014. 508(7496). P. 373-377. https://doi.org/10.1038/nature13184 | | 9. Candolfi Ch., Bouyrie Y., Sassi S., Dauscher A. and Lenoir B. Tetrahedrites: Prospective novel thermo-electric materials. Thermoelectrics for power generation - a look at trends in the technology. In: Thermoelectrics for Power Generation: A Look at Trends in the Technology. Eds. M. Nikitin, S. Skipidarov. InTech, 2016, P. 71-89. https://doi.org/10.5772/65638 | | 10. Du Y., Xu J., Paul B., Eklund P. Flexible thermo-electric materials and devices. Appl. Mater. Today. 2018. 12. P. 366-388. https://doi.org/10.1016/j.apmt.2018.07.004. https://doi.org/10.1016/j.apmt.2018.07.004 | | 11. Wu Q., Sadeghi H., García-Suárez V.M., Ferrer J., Lambert C.J. Thermoelectricity in vertical graphene-C60-graphene architectures. Sci. Repts. 2017. 7. Art. N 11680. https://doi.org/10.1038/s41598-017-10938-2 | | 12. Kim G.H., Shao L., Zhang K., Pipe K.P. engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013. 12. P. 719-723. https://doi.org/10.1038/nmat3635 | | 13. Ismail B.I., Ahmed W.H. Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Advances in Electrical & Electronic Engineering 2009. 2, No 1. P. 27-39. https://doi.org/10.2174/1874476110902010027. https://doi.org/10.2174/1874476110902010027 | | 14. Vining C.B. An inconvenient truth about thermoelectric. Nature Mater. 2009. 8. P. 83-85. https://doi.org/10.1038/nmat2361. https://doi.org/10.1038/nmat2361 | | 15. Rogalski A. Infrared Detectors, 2nd ed. CRC Press, Boca Raton, Florida, 2010. https://doi.org/10.1201/b10319 | | 16. Harrison M.T., Kershaw S.V., Burt M.G. et al. Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dots. Pure Appl. Chem. 2000. 72. P. 295-307. https://doi.org/10.1351/pac200072010295. https://doi.org/10.1351/pac200072010295 | | 17. Sargent E.H. Solar cells, photodetectors, and optical sources from infrared colloidal quantum dots. Adv. Mater. 2008. 20. P. 3958-3964. https://doi.org/10.1002/adma.200801153. https://doi.org/10.1002/adma.200801153 | | 18. Norton P. HgCdTe infrared detectors. Optoelectron. Rev. 2002. 10, No 3. P. 159-174. | | 19. Qian G., Wang Z.Y. Near-infrared organic com-pounds and emerging applications. Chem. Asian J. 2010. 5. P. 1006-1029. https://doi.org/10.1002/asia.200900596i. https://doi.org/10.1002/asia.200900596 | | 20. Perepichka D.F., Bryce M.R. Molecules with exceptionally small HOMO-LUMO gaps. Angew. Chem. Int. Ed. 2005. 44. P. 5370-5373. https://doi.org/10.1002/anie.200500413. https://doi.org/10.1002/anie.200500413 | | 21. Dawlaty J.M., Shivaraman S., Strait J. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 2008. 93. P. 13195. https://doi.org/10.1063/1.2990753. https://doi.org/10.1063/1.2990753 | | 22. Xu J., Wang R.Z., Li Y. A review of available technologies for seasonal thermal energy storage. Solar Energy. 2014. 103. P. 610-638. https://doi.org/10.1016/j.solener.2013.06.006. https://doi.org/10.1016/j.solener.2013.06.006 | | 23. Kuravi S., Trahan J., Goswami D.Y. et al. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science. 2013. 39. P. 285-319. https://doi.org/10.1016/j.pecs.2013.02.001. https://doi.org/10.1016/j.pecs.2013.02.001 | | 24. Faninger J. Sensible heat storage. In: Sustainable Solar Housing. Hastings R., Wall M. (eds.). London: Earthscan, 2012. P. 216-219. | | 25. Sharma A., Tyagi V.V., Chen C.R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009. 13. P. 318-345. https://doi.org/10.1016/j.rser.2007.10.005. https://doi.org/10.1016/j.rser.2007.10.005 | | 26. Abhat A. Low-temperature latent heat thermal energy storage: heat storage materials. Solar Energy. 1983. 30. P. 313-332. https://doi.org/10.1016/0038-092X(83)90186-X. https://doi.org/10.1016/0038-092X(83)90186-X | | 27. Zhou D., Zhao C.Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy. 2012. 92. P. 593-605. https://doi.org/10.1016/j.apenergy.2011.08.025. https://doi.org/10.1016/j.apenergy.2011.08.025 | | 28. Garg H.P., Mullick S.C., Bhargava A.K. Solar Thermal Energy Storage. Springer Science & Business Media, 2012. | | 29. N'Tsoukpoe K.E., Liu H., Le Pierres N., Luo L. A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews. 2009. 13. 2385-2396. https://doi.org/10.1016/j.rser.2009.05.008. https://doi.org/10.1016/j.rser.2009.05.008 | | 30. Lunt R.R., Bulovic V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 2011. 98. P. 113305. https://doi.org/10.1063/1.3567516. https://doi.org/10.1063/1.3567516 | | 31. Steinfeld A. Solar thermochemical production of hydrogen - a review. Solar Energy. 2005. 78. P. 603 -615. https://doi.org/10.1016/j.solener.2003.12.012. https://doi.org/10.1016/j.solener.2003.12.012 | | 32. Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy. 1977. 19. P. 467-475. https://doi.org/10.1016/0038-092X(77)90102-5. https://doi.org/10.1016/0038-092X(77)90102-5 | | 33. http://www.psa.es/es/index.php | | 34. Wen S., Zhou J., Zheng K., Bednarkiewicz A., Liu X., Jin D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018. 9. P. 2415. https://doi.org/10.1038/s41467-018-04813-5 | | 35. Rieder G. Photonik. Springer Verlag, Wien, 1997. https://doi.org/10.1007/978-3-7091-3801-4 | | 36. Zou W., Visser C., Maduro J.A. et al. Broadband dye-sensitized upconversion of near-infrared light Nat. Photon. 2012. 6. P. 560-564. https://doi.org/10.1038/nphoton.2012.158 | | 37. Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004. 104. P. 139-174. https://doi.org/10.1021/cr020357g. https://doi.org/10.1021/cr020357g | | 38. Mahr H. Two-photon absorption spectroscopy. In: Quantum Electronics: A Treatise, Vol. 1. Nonlinear Optics, Part A. Eds. H. Rabin, C.L. Tang. Academic Press, 2012. P. 286-363. | | 39. Ye C., Zhou L., Wang X. and Liang Z. Photon upconversion: from two-photon absorption (TPA) to triplet-triplet annihilation (TTA). Phys. Chem. Chem. Phys. 2016. 18. P. 10818-10835. https://doi.org/10.1039/C5CP07296D. https://doi.org/10.1039/C5CP07296D | | 40. Strümpel C., McCann M., Beaucarne G. et al. Mo-difying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials. Sol. Energy Mater. Sol. Cells. 2007. 91. P. 238-249. https://doi.org/10.1016/j.solmat.2006.09.003. https://doi.org/10.1016/j.solmat.2006.09.003 | | 41. Singh-Rachford T.N., Castellano F.N. Photon Up-conversion based on sensitized triplet-triplet anni-hilation. Coord. Chem. Rev. 2010. 254, N 21. P. 2560-2573. https://doi.org/10.1016/j.ccr.2010.01.003. https://doi.org/10.1016/j.ccr.2010.01.003 | | 42. Yang W., Zhao J., Sonn Ch. et al. Efficient inter-system crossing in heavy-atom-free perylene-bisimide derivatives. J. Phys. Chem. C. 2016. 120, No 19. P. 10162-10175. https://doi.org/10.1021/acs.jpcc.6b01584. https://doi.org/10.1021/acs.jpcc.6b01584 | | 43. Svagan A.J., Busko D., Avlasevich Yu. et al. Pho-ton energy upconverting nanopaper: A bioinspired oxygen protection strategy. ACS Nano. 2014. 8. P. 8198-8207. https://doi.org/10.1021/nn502496a. https://doi.org/10.1021/nn502496a | | 44. Yakutkin V., Aleshchenkov S., Chernov S. et al. Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthra-porphyrin. Chem. Eur. J. 2008. 14. P. 9846-9850. https://doi.org/10.1002/chem.200801305. https://doi.org/10.1002/chem.200801305 | | 45. Dimitriev O.P., Bricks J.L., Smirnova A.L., Slominskii Yu.L. Towards white-light generation through upconversion of low-power near-infrared photons. RSC Adv. 2017. 7. P. 16126-16130. https://doi.org/10.1039/C7RA00797C. https://doi.org/10.1039/C7RA00797C | | 46. LaCount M.D., Weingarten D., Hu N. et al. Energy pooling upconversion in organic molecular systems. J. Phys. Chem. A. 2015. 119, No 17. P. 4009-4016. https://doi.org/10.1021/acs.jpca.5b00509. https://doi.org/10.1021/acs.jpca.5b00509 | | 47. Weingarten D.H., Lacount M., van de Lagemaat J. et al. Experimental demonstration of photon upcon-version via cooperative energy pooling. Nat. Commun. 2017. 8. P. 14808. https://doi.org/10.1038/ncomms14808. https://doi.org/10.1038/ncomms14808 | | 48. Jenkins R.D., Andrews D.L. Three-center systems for energy pooling: Quantum electrodynamical theory. J. Phys. Chem. A. 1998. 102, No 52. P. 10834-10842. https://doi.org/10.1021/jp983071h. https://doi.org/10.1021/jp983071h | | 49. Zhu X., Su Q., Feng W., Li F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017. 46, No 4. P. 1025-1039. https://doi.org/10.1039/C6CS00415F. https://doi.org/10.1039/C6CS00415F | | 50. Goldschmidt J.C., Fischer S. Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015. 3, No 4. P. 510-535. https://doi.org/10.1002/adom.201500024. https://doi.org/10.1002/adom.201500024 | | 51. Duan C., Liang L., Li L., Zhang R., Xu Z.P. Recent progress in upconversion luminescence nanomate-rials for biomedical applications. J. Mater. Chem. B. 2018. 6, No 2. P. 192-209. https://doi.org/10.1039/C7TB02527K. https://doi.org/10.1039/C7TB02527K | | 52. Yamamoto K., Togawa R., Fujimura R., Kajikawa K. Local temperature variation measurement by anti-Stokes luminescence in attenuated total reflec-tion geometry. Opt. Exp. 2016. 24, No 17. P. 19026 -19031. https://doi.org/10.1364/OE.24.019026. https://doi.org/10.1364/OE.24.019026 | | 53. Ha S.T., Shen C., Zhang J., Xiong Q. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics. 2016. 10. P. 115-121. https://doi.org/10.1038/nphoton.2015.243 | | 54. Seletskiy D.V., Epstein R., Sheik-Bahae M. Laser cooling in solids: Advances and prospects. Rep. Prog. Phys. 2016. 79, No 9. P. 96401. https://doi.org/10.1088/0034-4885/79/9/096401. https://doi.org/10.1088/0034-4885/79/9/096401 | | 55. Sheik-Bahae M., Epstein R.I. Can laser light cool semiconductors? Phys. Rev. Lett. 2004. 92, No 24. P. 247403. https://doi.org/10.1103/PhysRevLett.92.247403. https://doi.org/10.1103/PhysRevLett.92.247403 | | 56. Zhang J., Li D., Chen R., Xiong Q. Laser cooling of a semiconductor by 40 Kelvin. Nature. 2013. 493 (7433). P. 504-508. https://doi.org/10.1038/nature11721. https://doi.org/10.1038/nature11721 | | 57. Menezes L., Maciel G., de Araujo C., Messaddeq Y. Phonon-assisted cooperative Energy Transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass. J. Appl. Phys. 2003. 94. P. 863-866. https://doi.org/10.1063/1.1577812. https://doi.org/10.1063/1.1577812 | | 58. Singh A.K., Kumar K., Pandey A. et al. Multi-pho-non assisted upconversion Emission and power de-pendence studies in LaF3:Er3+ phosphor. Spectro-chim. Acta. A. Mol. Biomol. Spectrosc. 2013. 106C. 236-241. https://doi.org/10.1016/j.saa.2013.01.018. https://doi.org/10.1016/j.saa.2013.01.018 | | 59. Xu X., Zhang W., Yang D. et al. Phonon-assisted population inversion in lanthanide-doped upcon-version Ba2LaF7 nanocrystals in glass-ceramics. Adv. Mater. 2016. 28, No 36. P. 8045-8050. https://doi.org/10.1002/adma.201601405. https://doi.org/10.1002/adma.201601405 | | 60. Rakovich Y.P., Filonovich S.A., Gomes M.J.M. et al. Anti-Stokes photoluminescence in II-VI col-loidal nanocrystals. phys. status solidi (b). 2002. 229. P. 449-452. https://doi.org/10.1002/1521-3951 (200201)229: 1<449::AID-PSSB449 >3.0.CO;2-4. https://doi.org/10.1002/1521-3951(200201)229:1<449::AID-PSSB449>3.0.CO;2-4 | | 61. Wang X., Yu W.W., Zhang J. et al. Photolumi-nescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B. 2003. 68, No 12. P. 125318. https://doi.org/10.1103/PhysRevB.68.125318. https://doi.org/10.1103/PhysRevB.68.125318 | | 62. Ignatiev I.V., Kozin I.E., Ren H.-W., Sugou S., Masumoto Y. Anti-Stokes photoluminescence of InP self-assembled quantum dots in the presence of electric current. Phys. Rev. B. 1999. 60. P. 1-4. https://doi.org/10.1103/PhysRevB.60.R14001. https://doi.org/10.1103/PhysRevB.60.R14001 | | 63. Qiu X., Zhu X., Su X. et al. Near-infrared upcon-version luminescence and bioimaging in vivo based on quantum dots. Adv. Sci. 2019. 6. P. 1801834. https://doi.org/10.1002/advs.201801834. https://doi.org/10.1002/advs.201801834 | | 64. Mergenthaler K., Anttu N., Vainorius N. et al. Anti-Stokes photoluminescence probing k-conservation and thermalization of minority carriers in degene-rately doped semiconductors. Nat. Commun. 2017. 8, No 1. P. 1634. https://doi.org/10.1038/s41467-017-01817-5. https://doi.org/10.1038/s41467-017-01817-5 | | 65. Roman B.J., Sheldon M.T. Six-fold plasmonic enhancement of thermal scavenging via CsPbBr3 anti-Stokes photoluminescence. Nanophotonics. 2019. 8. P. 599-605. https://doi.org/10.1515/nanoph-2018-0196. https://doi.org/10.1515/nanoph-2018-0196 | | 66. Morozov Y.V., Zhang S., Brennan M.C. et al. Phot-toluminescence up-conversion in CsPbBr3 nanocry-stals. ACS Energy Lett. 2017. 2, No 10. P. 2514-2515. https://doi.org/10.1021/acsenergylett.7b00902. https://doi.org/10.1021/acsenergylett.7b00902 | | 67. Koscher B.A., Swabeck J.K., Bronstein N.D., Alivisatos A.P. Essentially trap-free CsPbBr3 col-loidal nanocrystals by postsynthetic thiocyanate sur-face treatment. J. Am. Chem. Soc. 2017. 139, N 19. P. 6566-6569. https://doi.org/10.1021/jacs.7b02817. https://doi.org/10.1021/jacs.7b02817 | | 68. Akizuki N., Aota S., Mouri S. et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 2015. 6. P. 1-6. https://doi.org/10.1038/ncomms9920 | | 69. Kachynski A.V., Kuzmin A.N., Pudavar H.E., Prasad P.N. Three-dimensional confocal thermal imaging using anti-Stokes luminescence. Appl. Phys. Lett. 2005. 87, No 2. P. 23901. https://doi.org/10.1063/1.1993761. https://doi.org/10.1063/1.1993761 | | 70. Drobizhev M., Karotki A., Kruk M. et al. Photon energy upconversion in porphyrins: One-photon hot-band absorption versus two-photon absorption. Chem. Phys. Lett. 2003. 370, No 5. P. 690-699. https://doi.org/10.1016/S0009-2614(03)00162-3. https://doi.org/10.1016/S0009-2614(03)00162-3 | | 71. Chen T.-H., Zhang S., Jaishi M. et al. New near-infrared fluorescent probes with single-photon anti-Stokes-shift fluorescence for sensitive determina-tion of pH variances in lysosomes with a double-checked capability. ACS Appl. Bio Mater. 2018. 1, No 3. P. 549-560. https://doi.org/10.1021/acsabm.8b00020. https://doi.org/10.1021/acsabm.8b00020 | | 72. Meshalkin Y.P., Svetlichnyi V.A., Lapin I.N. Anti-Stokes fluorescence of polymethine dyes excited by a titanium-sapphire laser. Russ. Phys. J. 2007. 50, No 3. P. 267-274. https://doi.org/10.1007/s11182-007-0037-0. https://doi.org/10.1007/s11182-007-0037-0 | | 73. Sheik-Bahae M., Epstein, R.I. Optical refrigeration. Nat. Photonics. 2007. 1. P. 693-699. https://doi.org/10.1038/nphoton.2007.244 | | 74. Dimitriev O.P., Fedoryak A.N., Slominskii Yu.L., Smirnova A., Yoshida T. Phonon-assisted anti-Stokes luminescence of tricarbocyanine near-infrared dye, Chem. Phys. Lett. 2019. In press. https://doi.org/10.1016/j.cplett.2019.136905. https://doi.org/10.1016/j.cplett.2019.136905 | |
|
|