Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 457-469 (2019).
DOI: https://doi.org/10.15407/spqeo22.04.457


References

1. Abbot C.G. Terrestrial temperature and atmospheric absorption. Proc. Natl. Acad. Sci. USA, 1918. 4. P. 104-106.
https://doi.org/10.1073/pnas.4.4.104
2. Dimitriev O.P. Global energy consumption rates: where is the limit? Sustainable Energy. 2013. 1. P. 1-6. https://doi.org/10.12691/rse-1-1-1.
3. Richards P.L. Bolometers for infrared and milli-meter waves. J. Appl. Phys. 1994. 76. P. 1-36. https://doi.org/10.1063/1.357128.
https://doi.org/10.1063/1.357128
4. Efetov D.K., Shiue Ren-Jye, Gao Yuanda et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nature Nanotechn. 2018. 13. P. 797-801.
https://doi.org/10.1038/s41565-018-0169-0
5. Kouchachvili L., Ikura M. Pyroelectric conversion -effects of P(VDF-TrFE) preconditioning on power conversion. J. Electrostatics. 2007. 65, No 3. P. 182 -188. https://doi.org/10.1016/j.elstat.2006.07.014.
https://doi.org/10.1016/j.elstat.2006.07.014
6. US Patent 4647836, US Patent 6528898, US Patent 5644184.
7. Li J.F., Liu W.S., Zhao L.D., Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010. 2. P. 152-158.
https://doi.org/10.1038/asiamat.2010.138
8. Kanatzidis M. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014. 508(7496). P. 373-377.
https://doi.org/10.1038/nature13184
9. Candolfi Ch., Bouyrie Y., Sassi S., Dauscher A. and Lenoir B. Tetrahedrites: Prospective novel thermo-electric materials. Thermoelectrics for power generation - a look at trends in the technology. In: Thermoelectrics for Power Generation: A Look at Trends in the Technology. Eds. M. Nikitin, S. Skipidarov. InTech, 2016, P. 71-89.
https://doi.org/10.5772/65638
10. Du Y., Xu J., Paul B., Eklund P. Flexible thermo-electric materials and devices. Appl. Mater. Today. 2018. 12. P. 366-388. https://doi.org/10.1016/j.apmt.2018.07.004.
https://doi.org/10.1016/j.apmt.2018.07.004
11. Wu Q., Sadeghi H., García-Suárez V.M., Ferrer J., Lambert C.J. Thermoelectricity in vertical graphene-C60-graphene architectures. Sci. Repts. 2017. 7. Art. N 11680.
https://doi.org/10.1038/s41598-017-10938-2
12. Kim G.H., Shao L., Zhang K., Pipe K.P. engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013. 12. P. 719-723.
https://doi.org/10.1038/nmat3635
13. Ismail B.I., Ahmed W.H. Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Advances in Electrical & Electronic Engineering 2009. 2, No 1. P. 27-39. https://doi.org/10.2174/1874476110902010027.
https://doi.org/10.2174/1874476110902010027
14. Vining C.B. An inconvenient truth about thermoelectric. Nature Mater. 2009. 8. P. 83-85. https://doi.org/10.1038/nmat2361.
https://doi.org/10.1038/nmat2361
15. Rogalski A. Infrared Detectors, 2nd ed. CRC Press, Boca Raton, Florida, 2010.
https://doi.org/10.1201/b10319
16. Harrison M.T., Kershaw S.V., Burt M.G. et al. Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dots. Pure Appl. Chem. 2000. 72. P. 295-307. https://doi.org/10.1351/pac200072010295.
https://doi.org/10.1351/pac200072010295
17. Sargent E.H. Solar cells, photodetectors, and optical sources from infrared colloidal quantum dots. Adv. Mater. 2008. 20. P. 3958-3964. https://doi.org/10.1002/adma.200801153.
https://doi.org/10.1002/adma.200801153
18. Norton P. HgCdTe infrared detectors. Optoelectron. Rev. 2002. 10, No 3. P. 159-174.
19. Qian G., Wang Z.Y. Near-infrared organic com-pounds and emerging applications. Chem. Asian J. 2010. 5. P. 1006-1029. https://doi.org/10.1002/asia.200900596i.
https://doi.org/10.1002/asia.200900596
20. Perepichka D.F., Bryce M.R. Molecules with exceptionally small HOMO-LUMO gaps. Angew. Chem. Int. Ed. 2005. 44. P. 5370-5373. https://doi.org/10.1002/anie.200500413.
https://doi.org/10.1002/anie.200500413
21. Dawlaty J.M., Shivaraman S., Strait J. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 2008. 93. P. 13195. https://doi.org/10.1063/1.2990753.
https://doi.org/10.1063/1.2990753
22. Xu J., Wang R.Z., Li Y. A review of available technologies for seasonal thermal energy storage. Solar Energy. 2014. 103. P. 610-638. https://doi.org/10.1016/j.solener.2013.06.006.
https://doi.org/10.1016/j.solener.2013.06.006
23. Kuravi S., Trahan J., Goswami D.Y. et al. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science. 2013. 39. P. 285-319. https://doi.org/10.1016/j.pecs.2013.02.001.
https://doi.org/10.1016/j.pecs.2013.02.001
24. Faninger J. Sensible heat storage. In: Sustainable Solar Housing. Hastings R., Wall M. (eds.). London: Earthscan, 2012. P. 216-219.
25. Sharma A., Tyagi V.V., Chen C.R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009. 13. P. 318-345. https://doi.org/10.1016/j.rser.2007.10.005.
https://doi.org/10.1016/j.rser.2007.10.005
26. Abhat A. Low-temperature latent heat thermal energy storage: heat storage materials. Solar Energy. 1983. 30. P. 313-332. https://doi.org/10.1016/0038-092X(83)90186-X.
https://doi.org/10.1016/0038-092X(83)90186-X
27. Zhou D., Zhao C.Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy. 2012. 92. P. 593-605. https://doi.org/10.1016/j.apenergy.2011.08.025.
https://doi.org/10.1016/j.apenergy.2011.08.025
28. Garg H.P., Mullick S.C., Bhargava A.K. Solar Thermal Energy Storage. Springer Science & Business Media, 2012.
29. N'Tsoukpoe K.E., Liu H., Le Pierres N., Luo L. A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews. 2009. 13. 2385-2396. https://doi.org/10.1016/j.rser.2009.05.008.
https://doi.org/10.1016/j.rser.2009.05.008
30. Lunt R.R., Bulovic V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 2011. 98. P. 113305. https://doi.org/10.1063/1.3567516.
https://doi.org/10.1063/1.3567516
31. Steinfeld A. Solar thermochemical production of hydrogen - a review. Solar Energy. 2005. 78. P. 603 -615. https://doi.org/10.1016/j.solener.2003.12.012.
https://doi.org/10.1016/j.solener.2003.12.012
32. Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy. 1977. 19. P. 467-475. https://doi.org/10.1016/0038-092X(77)90102-5.
https://doi.org/10.1016/0038-092X(77)90102-5
33. http://www.psa.es/es/index.php
34. Wen S., Zhou J., Zheng K., Bednarkiewicz A., Liu X., Jin D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018. 9. P. 2415.
https://doi.org/10.1038/s41467-018-04813-5
35. Rieder G. Photonik. Springer Verlag, Wien, 1997.
https://doi.org/10.1007/978-3-7091-3801-4
36. Zou W., Visser C., Maduro J.A. et al. Broadband dye-sensitized upconversion of near-infrared light Nat. Photon. 2012. 6. P. 560-564.
https://doi.org/10.1038/nphoton.2012.158
37. Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004. 104. P. 139-174. https://doi.org/10.1021/cr020357g.
https://doi.org/10.1021/cr020357g
38. Mahr H. Two-photon absorption spectroscopy. In: Quantum Electronics: A Treatise, Vol. 1. Nonlinear Optics, Part A. Eds. H. Rabin, C.L. Tang. Academic Press, 2012. P. 286-363.
39. Ye C., Zhou L., Wang X. and Liang Z. Photon upconversion: from two-photon absorption (TPA) to triplet-triplet annihilation (TTA). Phys. Chem. Chem. Phys. 2016. 18. P. 10818-10835. https://doi.org/10.1039/C5CP07296D.
https://doi.org/10.1039/C5CP07296D
40. Strümpel C., McCann M., Beaucarne G. et al. Mo-difying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials. Sol. Energy Mater. Sol. Cells. 2007. 91. P. 238-249. https://doi.org/10.1016/j.solmat.2006.09.003.
https://doi.org/10.1016/j.solmat.2006.09.003
41. Singh-Rachford T.N., Castellano F.N. Photon Up-conversion based on sensitized triplet-triplet anni-hilation. Coord. Chem. Rev. 2010. 254, N 21. P. 2560-2573. https://doi.org/10.1016/j.ccr.2010.01.003.
https://doi.org/10.1016/j.ccr.2010.01.003
42. Yang W., Zhao J., Sonn Ch. et al. Efficient inter-system crossing in heavy-atom-free perylene-bisimide derivatives. J. Phys. Chem. C. 2016. 120, No 19. P. 10162-10175. https://doi.org/10.1021/acs.jpcc.6b01584.
https://doi.org/10.1021/acs.jpcc.6b01584
43. Svagan A.J., Busko D., Avlasevich Yu. et al. Pho-ton energy upconverting nanopaper: A bioinspired oxygen protection strategy. ACS Nano. 2014. 8. P. 8198-8207. https://doi.org/10.1021/nn502496a.
https://doi.org/10.1021/nn502496a
44. Yakutkin V., Aleshchenkov S., Chernov S. et al. Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthra-porphyrin. Chem. Eur. J. 2008. 14. P. 9846-9850. https://doi.org/10.1002/chem.200801305.
https://doi.org/10.1002/chem.200801305
45. Dimitriev O.P., Bricks J.L., Smirnova A.L., Slominskii Yu.L. Towards white-light generation through upconversion of low-power near-infrared photons. RSC Adv. 2017. 7. P. 16126-16130. https://doi.org/10.1039/C7RA00797C.
https://doi.org/10.1039/C7RA00797C
46. LaCount M.D., Weingarten D., Hu N. et al. Energy pooling upconversion in organic molecular systems. J. Phys. Chem. A. 2015. 119, No 17. P. 4009-4016. https://doi.org/10.1021/acs.jpca.5b00509.
https://doi.org/10.1021/acs.jpca.5b00509
47. Weingarten D.H., Lacount M., van de Lagemaat J. et al. Experimental demonstration of photon upcon-version via cooperative energy pooling. Nat. Commun. 2017. 8. P. 14808. https://doi.org/10.1038/ncomms14808.
https://doi.org/10.1038/ncomms14808
48. Jenkins R.D., Andrews D.L. Three-center systems for energy pooling:  Quantum electrodynamical theory. J. Phys. Chem. A. 1998. 102, No 52. P. 10834-10842. https://doi.org/10.1021/jp983071h.
https://doi.org/10.1021/jp983071h
49. Zhu X., Su Q., Feng W., Li F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017. 46, No 4. P. 1025-1039. https://doi.org/10.1039/C6CS00415F.
https://doi.org/10.1039/C6CS00415F
50. Goldschmidt J.C., Fischer S. Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015. 3, No 4. P. 510-535. https://doi.org/10.1002/adom.201500024.
https://doi.org/10.1002/adom.201500024
51. Duan C., Liang L., Li L., Zhang R., Xu Z.P. Recent progress in upconversion luminescence nanomate-rials for biomedical applications. J. Mater. Chem. B. 2018. 6, No 2. P. 192-209. https://doi.org/10.1039/C7TB02527K.
https://doi.org/10.1039/C7TB02527K
52. Yamamoto K., Togawa R., Fujimura R., Kajikawa K. Local temperature variation measurement by anti-Stokes luminescence in attenuated total reflec-tion geometry. Opt. Exp. 2016. 24, No 17. P. 19026 -19031. https://doi.org/10.1364/OE.24.019026.
https://doi.org/10.1364/OE.24.019026
53. Ha S.T., Shen C., Zhang J., Xiong Q. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics. 2016. 10. P. 115-121.
https://doi.org/10.1038/nphoton.2015.243
54. Seletskiy D.V., Epstein R., Sheik-Bahae M. Laser cooling in solids: Advances and prospects. Rep. Prog. Phys. 2016. 79, No 9. P. 96401. https://doi.org/10.1088/0034-4885/79/9/096401.
https://doi.org/10.1088/0034-4885/79/9/096401
55. Sheik-Bahae M., Epstein R.I. Can laser light cool semiconductors? Phys. Rev. Lett. 2004. 92, No 24. P. 247403. https://doi.org/10.1103/PhysRevLett.92.247403.
https://doi.org/10.1103/PhysRevLett.92.247403
56. Zhang J., Li D., Chen R., Xiong Q. Laser cooling of a semiconductor by 40 Kelvin. Nature. 2013. 493 (7433). P. 504-508. https://doi.org/10.1038/nature11721.
https://doi.org/10.1038/nature11721
57. Menezes L., Maciel G., de Araujo C., Messaddeq Y. Phonon-assisted cooperative Energy Transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass. J. Appl. Phys. 2003. 94. P. 863-866. https://doi.org/10.1063/1.1577812.
https://doi.org/10.1063/1.1577812
58. Singh A.K., Kumar K., Pandey A. et al. Multi-pho-non assisted upconversion Emission and power de-pendence studies in LaF3:Er3+ phosphor. Spectro-chim. Acta. A. Mol. Biomol. Spectrosc. 2013. 106C. 236-241. https://doi.org/10.1016/j.saa.2013.01.018.
https://doi.org/10.1016/j.saa.2013.01.018
59. Xu X., Zhang W., Yang D. et al. Phonon-assisted population inversion in lanthanide-doped upcon-version Ba2LaF7 nanocrystals in glass-ceramics. Adv. Mater. 2016. 28, No 36. P. 8045-8050. https://doi.org/10.1002/adma.201601405.
https://doi.org/10.1002/adma.201601405
60. Rakovich Y.P., Filonovich S.A., Gomes M.J.M. et al. Anti-Stokes photoluminescence in II-VI col-loidal nanocrystals. phys. status solidi (b). 2002. 229. P. 449-452. https://doi.org/10.1002/1521-3951 (200201)229: 1<449::AID-PSSB449 >3.0.CO;2-4.
https://doi.org/10.1002/1521-3951(200201)229:1<449::AID-PSSB449>3.0.CO;2-4
61. Wang X., Yu W.W., Zhang J. et al. Photolumi-nescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B. 2003. 68, No 12. P. 125318. https://doi.org/10.1103/PhysRevB.68.125318.
https://doi.org/10.1103/PhysRevB.68.125318
62. Ignatiev I.V., Kozin I.E., Ren H.-W., Sugou S., Masumoto Y. Anti-Stokes photoluminescence of InP self-assembled quantum dots in the presence of electric current. Phys. Rev. B. 1999. 60. P. 1-4. https://doi.org/10.1103/PhysRevB.60.R14001.
https://doi.org/10.1103/PhysRevB.60.R14001
63. Qiu X., Zhu X., Su X. et al. Near-infrared upcon-version luminescence and bioimaging in vivo based on quantum dots. Adv. Sci. 2019. 6. P. 1801834. https://doi.org/10.1002/advs.201801834.
https://doi.org/10.1002/advs.201801834
64. Mergenthaler K., Anttu N., Vainorius N. et al. Anti-Stokes photoluminescence probing k-conservation and thermalization of minority carriers in degene-rately doped semiconductors. Nat. Commun. 2017. 8, No 1. P. 1634. https://doi.org/10.1038/s41467-017-01817-5.
https://doi.org/10.1038/s41467-017-01817-5
65. Roman B.J., Sheldon M.T. Six-fold plasmonic enhancement of thermal scavenging via CsPbBr3 anti-Stokes photoluminescence. Nanophotonics. 2019. 8. P. 599-605. https://doi.org/10.1515/nanoph-2018-0196.
https://doi.org/10.1515/nanoph-2018-0196
66. Morozov Y.V., Zhang S., Brennan M.C. et al. Phot-toluminescence up-conversion in CsPbBr3 nanocry-stals. ACS Energy Lett. 2017. 2, No 10. P. 2514-2515. https://doi.org/10.1021/acsenergylett.7b00902.
https://doi.org/10.1021/acsenergylett.7b00902
67. Koscher B.A., Swabeck J.K., Bronstein N.D., Alivisatos A.P. Essentially trap-free CsPbBr3 col-loidal nanocrystals by postsynthetic thiocyanate sur-face treatment. J. Am. Chem. Soc. 2017. 139, N 19. P. 6566-6569. https://doi.org/10.1021/jacs.7b02817.
https://doi.org/10.1021/jacs.7b02817
68. Akizuki N., Aota S., Mouri S. et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 2015. 6. P. 1-6.
https://doi.org/10.1038/ncomms9920
69. Kachynski A.V., Kuzmin A.N., Pudavar H.E., Prasad P.N. Three-dimensional confocal thermal imaging using anti-Stokes luminescence. Appl. Phys. Lett. 2005. 87, No 2. P. 23901. https://doi.org/10.1063/1.1993761.
https://doi.org/10.1063/1.1993761
70. Drobizhev M., Karotki A., Kruk M. et al. Photon energy upconversion in porphyrins: One-photon hot-band absorption versus two-photon absorption. Chem. Phys. Lett. 2003. 370, No 5. P. 690-699. https://doi.org/10.1016/S0009-2614(03)00162-3.
https://doi.org/10.1016/S0009-2614(03)00162-3
71. Chen T.-H., Zhang S., Jaishi M. et al. New near-infrared fluorescent probes with single-photon anti-Stokes-shift fluorescence for sensitive determina-tion of pH variances in lysosomes with a double-checked capability. ACS Appl. Bio Mater. 2018. 1, No 3. P. 549-560. https://doi.org/10.1021/acsabm.8b00020.
https://doi.org/10.1021/acsabm.8b00020
72. Meshalkin Y.P., Svetlichnyi V.A., Lapin I.N. Anti-Stokes fluorescence of polymethine dyes excited by a titanium-sapphire laser. Russ. Phys. J. 2007. 50, No 3. P. 267-274. https://doi.org/10.1007/s11182-007-0037-0.
https://doi.org/10.1007/s11182-007-0037-0
73. Sheik-Bahae M., Epstein, R.I. Optical refrigeration. Nat. Photonics. 2007. 1. P. 693-699.
https://doi.org/10.1038/nphoton.2007.244
74. Dimitriev O.P., Fedoryak A.N., Slominskii Yu.L., Smirnova A., Yoshida T. Phonon-assisted anti-Stokes luminescence of tricarbocyanine near-infrared dye, Chem. Phys. Lett. 2019. In press. https://doi.org/10.1016/j.cplett.2019.136905.
https://doi.org/10.1016/j.cplett.2019.136905