Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 470-478 (2019).
DOI: https://doi.org/10.15407/spqeo22.04.470


References

1. Shirakawa H., Louis E.J., MacDiarmid A.G. et al. Synthesis of electrically conducting organic polymers: halogen derivatives of poly(acetylene), (CH)x. J. Chem. Soc., Chem. Commun. 1977. P. 578-580. https://doi.org/10.1039/C39770000578.
https://doi.org/10.1039/c39770000578
2. Bujak P., Kulszewicz-Bajer I., Zagorska M., Maurel V., Wielgusa I., Pron A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013. 42. P. 8895-8999. https://doi.org/10.1039/C3CS60257E.
https://doi.org/10.1039/c3cs60257e
3. Ning C., Zhou Z., Tan G., Zhu Y., Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018. 81. P. 144-162. https://doi.org/10.1016/j.progpolymsci.2018.01.001.
https://doi.org/10.1016/j.progpolymsci.2018.01.001
4. Inal S., Rivnay J., Suiu A.-O., Malliaras G.G., McCulloch I. Conjugated polymers in bioelec-tronics. Acc. Chem. Res. 2018. 51. P. 1368-1376. https://doi.org/10.1021/acs.accounts.7b00624.
https://doi.org/10.1021/acs.accounts.7b00624
5. Noh J.-S. Conductive, elastomers for stretchable electronics. Sensors and Energy Harvesters. Polym. 2016. 8. P. 123. https://doi.org/10.3390/polym8040123.
https://doi.org/10.3390/polym8040123
6. Ates M., Karazehira T., Sarac A. Conducting polymers and their applications. Curr. Phys. Chem. 2012. 2. P. 224-240.
https://doi.org/10.2174/1877947611202030224
7. Pud A., Ogurtsov N., Korzhenko A., Shapoval G. Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 2003. 28. P. 1701-1753.
https://doi.org/10.1016/j.progpolymsci.2003.08.001
8. Malinauskas A. Chemical deposition of conducting polymers. Polym. 2001. 42. P. 3957-3972.
https://doi.org/10.1016/S0032-3861(00)00800-4
9. Zhan C., Yu G., Lu Y., Wang L., Wujcik E., Wei S. Conductive polymer nanocomposites: a critical review of modern advanced devices. J. Mater. Chem. C. 2017. 5. P. 1569-1585. https://doi.org/10.1039/C6TC04269D.
https://doi.org/10.1039/C6TC04269D
10. Pud A.A., Noskov Yu.V., Ogurtsov N.A. et al. Formation and properties of nano- and micro-structured conducting polymer host-guest composites. Synth. Met. 2009. 159. P. 2253-2258. https://doi.org/10.1016/j.synthmet.2009.08.043.
https://doi.org/10.1016/j.synthmet.2009.08.043
11. Pud A.A., Noskov Yu.V., Kassiba A. et al. New aspects of the low concentrated aniline poly-merization in the solution and in SiC nanocrystals dispersion. J. Phys. Chem. B. 2007. 111. P. 2174-2180. https://doi.org/10.1021/jp0656025.
https://doi.org/10.1021/jp0656025
12. Pud A.A., Noskov Yu.V., Dudarenko G.V., Shapoval G.S. Effect of the nature of acid dopant and oxidizer on the polymerization of aniline in the presence of polycarbonate dispersion. Theor. Experim. Chem. 2008. 44, No 1. P. 54-59.
https://doi.org/10.1007/s11237-008-9001-5
13. Ogurtsov N.A., Noskov Yu.V., Pud A.A. Effect of multiwalled carbon nanotubes on the kinetics of the aniline polymerization: The semi-quantitative OCP approach. J. Phys. Chem. B. 2015. 119, No 15. P. 5055-5061. https://doi.org/10.1021/jp511665q.
https://doi.org/10.1021/jp511665q
14. Ogurtsov N.A., Mikhaylov S.D., Coddeville P. et al. Influence of dispersed nanoparticles on the ki-netics of formation and molecular mass of polyani-line. J. Phys. Chem. B. 2016. 120, No 38. P. 10106-10113. https://doi.org/10.1021/acs.jpcb.6b05944.
https://doi.org/10.1021/acs.jpcb.6b05944
15. Tabellout M., Fatyeyeva K., Baillif P.-Y., Bardeau J.-F., Pud A.A. The influence of the polymer matrix on the dielectric and electrical properties of con-ductive polymer composites based on polyaniline. J. Non-Cryst. Solids. 2005. 351. P. 2835-2841. https://doi.org/10.1016/j.jnoncrysol.2005.04.085.
https://doi.org/10.1016/j.jnoncrysol.2005.04.085
16. Privalko P., Ponomarenko S.M., Privalko E.G. et al. Structure/property relationships for poly(vinylidene fluoride)/doped polyaniline blends. J. Macromol. Sci., Part B: Phys. 2005. 44. P. 749-759. https://doi.org/10.1080/00222340500251394.
https://doi.org/10.1080/00222340500251394
17. Bliznyuk V.N., Baig A., Singamaneni S. et al. Effects of surface and volume modification of poly-(vinylidene fluoride) by polyaniline on the structure and electrical properties of their composites. Polym. 2005. 46, No 25. P. 11728-11736. https://doi.org/10.1016/j.polymer.2005.09.058.
https://doi.org/10.1016/j.polymer.2005.09.058
18. Dimitriev O.P., Ogurtsov N.A., Pud A.A. et al. Probing of charge and energy transfer in hybrid systems of aniline-3-methylthiophene copolymer with CdS and CdSe nanoparticles. J. Phys. Chem. ะก. 2008. 112, No 38. P. 14745-14753. https://doi.org/10.1021/jp802797g.
https://doi.org/10.1021/jp802797g
19. Petrychuk M., Kovalenko V., Pud A., Ogurtsov N., Gubin A. Ternary magnetic nanocomposites based on core-shell Fe3O4/polyaniline) nanoparticles distributed in PVDF matrix. phys. status solidi (a). 2010. 207, No 2. P. 442-447 https://doi.org/10.1002/pssa.200824421.
https://doi.org/10.1002/pssa.200824421
20. Neelgund G.M., Bliznyuk V.N., Pud A.A., Fatyeyeva K.Yu., Hrehorova E., Joyce M. Formation of nanostructured composites with envi-ronmentally-dependent electrical properties based on poly(vinylidene fluoride)-polyaniline core-shell latex system. Polym. 2010. 51, No 9. P. 2000-2006. https://doi.org/10.1016/j.polymer.2010.02.038.
https://doi.org/10.1016/j.polymer.2010.02.038
21. Bliznyuk V., Pud A., Scipioni L., Huynh C., Ogurtsov N., Ferranti D. Structure and properties of polymer core-shell systems: Helium ion microscopy and electrical conductivity studies. J. Vac. Sci. Technol. 2010. 28, No 6. P. C6P59-C6P65. https://doi.org/10.1116/1.3504589.
https://doi.org/10.1116/1.3504589
22. Wojkiewicz J.-L., Bliznyuk V.N., Carquigny S. et al. Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens. Actuators B. 2011. 160, No 1. P. 1394-1403. https://doi.org/10.1016/j.snb.2011.09.084.
https://doi.org/10.1016/j.snb.2011.09.084
23. Ogurtsov N.A., Pud A.A., Dimitriev O.P. et al. Synthesis and properties of hybrid poly(3-methylthiophene)-CdSe nanocomposite and estimation of its photovoltaic ability. Mol. Cryst. Liquid. Cryst. 2011. 536, No 1. P. 33-40. https://doi.org/10.1080/15421406.2011.538330.
https://doi.org/10.1080/15421406.2011.538330
24. Dimitriev O.P., Ogurtsov N.A., Li Y. et al. Tuning of the charge and energy transfer in ternary CdSe/poly (3-methylthiophene)/poly (3-hexylthio-phene) nanocomposite system. Coloid. & Polym. Sci. 2012. 290. P. 1145-1156. https://doi.org/10.1007/s00396-012-2632-z.
https://doi.org/10.1007/s00396-012-2632-z
25. Ogurtsov N.A., Noskov Y.V., Fatyeyeva K.Yu. et al. The deep impact of the template on molecular weight, structure and oxidation state of the formed polyaniline. J. Phys. Chem. B. 2013. 117, No 17. P. 5306-5314. https://doi.org/10.1021/jp311898v.
https://doi.org/10.1021/jp311898v
26. Mikhaylov S., Ogurtsov N., Noskov Y. et al. Ammonia/amines electronic gas sensors based on hybrid polyaniline-TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Adv. 2015. 5, No 26. P. 20218-20226. https://doi.org/10.1039/C4RA16121A.
https://doi.org/10.1039/C4RA16121A
27. Noskov Yu., Mikhaylov S., Coddeville P., Wojkiewicz J.-L., Pud A. Acid-dopant effects in the formation and properties of polycarbonate-polyani-line composites. Synth. Met. 2016. 217. P. 266-275. https://doi.org/10.1016/j.synthmet.2016.04.015.
https://doi.org/10.1016/j.synthmet.2016.04.015
28. Mikhaylov S., Ogurtsov N.A., Redon N. et al. The PANI-DBSA content and dispersing solvent as influencing parameters in sensing performances of TiO2/PANI-DBSA hybrid nanocomposites to ammonia. RSC Adv. 2016. 6, No 86. P. 82625-82634. https://doi.org/10.1039/C6RA12693F.
https://doi.org/10.1039/C6RA12693F
29. Ogurtsov N.A., Noskov Y.V., Bliznyuk V.N. et al. Evolution and interdependence of structure and properties of nanocomposites of multiwall carbon nanotubes with polyaniline. J. Phys. Chem. C. 2016. 120, No 1. P. 230-242. https://doi.org/10.1021/acs.jpcc.5b08524.
https://doi.org/10.1021/acs.jpcc.5b08524
30. Pud A.A., Nikolayeva O.A., Vretik L.O. et al. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid. Nanosc. Res. Lett. 2017. 12. P. 493-503. https://doi.org/10.1186/s11671-017-2265-8.
https://doi.org/10.1186/s11671-017-2265-8
31. Ogurtsov N.A., Bliznyuk V.N., Mamykin A.V. et al. Poly(vinylidene fluoride)/poly (3-methyl-thiophene) core-shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Phys. Chem. Chem. Phys. 2018. 20, No 9. P. 6450-6461. https://doi.org/10.1039/C7CP07604E.
https://doi.org/10.1039/C7CP07604E
32. Le Maout P., Wojkiewicz J.-L., Redon N. et al. Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease. Sens. Actuators B 2018. 274. P. 616-626. https://doi.org/10.1016/j.snb.2018.07.178.
https://doi.org/10.1016/j.snb.2018.07.178
33. Ogurtsov N.A., Noskov Yu.V., Kruglyak O.S. et al. Effect of the dopant anion and oxidant on the structure and properties of nanocomposites of polypyrrole and carbon nanotubes. Theor. Experim. Chem. 2018. 54, No 2. P. 114-121.
https://doi.org/10.1007/s11237-018-9554-x