Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 385-392 (2020).


1. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.

2. Berut A., Petrosyan A., Ciliberto S. Information and thermodynamics: Experimental verification of Landauer's erasure principle. Journal of Statistical Mechanics: Theory and Experiment. 2015. 2015, No 6. P06015.

3. IBM QX backend information (2018). Available at

4. Morello A., Tosi G., Mohiyaddin F.A. et al. Scalable quantum computing with ion-implanted dopant atoms in silicon. IEEE International Electron Devices Meeting. 2018. P. 6.2.1-6.2.4. San Francisco, CA.

5. Stojanovic V.M. Feasibility of single-shot realizations of conditional three-qubit gates in exchange-coupled qubit arrays with local control. Phys. Rev. A. 2019. 99, No 1. P. 012345.

6. Maslov D., Dueck G., Miller D. Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans-actions on VLSI Systems. 2005. 13, No 6. P. 765-769.

7. Saeedi M. and Markov I.L. Synthesis and optimization of reversible circuits - a survey. ACM Comput. Surv. 2013. 45, No 2. Article 21.

8. Donald J., Jha N.K. Reversible logic synthesis with Fredkin and Peres gates. J. Emerg. Technol. Comput. Syst. 2008. 4, No 1. Article 2.

9. Picton P.D. Modified Fredkin gates in logic design. Microelectron. J. 1994. 25, No 6. P. 437-441.

10. Szyprowski M., Kerntopf P. Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. Proc. 13th IEEE Conference on Nanotechnology, Beijing, China, 5-8 Aug. 2013. P. 802-807.

11. Pla J.J., Tan K.Y., Dehollain J.P. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature. 2013. 496(7445). P. 334-338.

12. Zhang X., Li H., Cao G., Xiao M., Guo G. Semiconductor quantum computation. National Science Review. 2019. 6, No 1. P. 32-54.

13. Xue F., Du J.-F., Shi M.-J. et al. Realization of the Fredkin gate by three transition pulses in a nuclear magnetic resonance quantum information processor. Chin. Phys. Lett. 2002. 19, No 8. P. 1048-1050.

14. Rozhdov O., Yuriychuk I., and Deibuk V. Building a generalized Peres gate with multiple control signals. Advances in Intelligent Systems and Computing. 2019. 754. P. 155-164.

15. Yuriychuk I., Hu Z., and Deibuk V. Effect of the noise on generalized Peres gate operation. Advances in Intelligent Systems and Computing. 2020. 938. P. 428-437.