Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 385-392 (2020).
References
1. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.
2. Berut A., Petrosyan A., Ciliberto S. Information and thermodynamics: Experimental verification of Landauer's erasure principle. Journal of Statistical Mechanics: Theory and Experiment. 2015. 2015, No 6. P06015.
https://doi.org/10.1088/1742-5468/2015/06/P06015
3. IBM QX backend information (2018). Available at
https://github.com/QISKit/ibmqx-backend-information.
4. Morello A., Tosi G., Mohiyaddin F.A. et al. Scalable quantum computing with ion-implanted dopant atoms in silicon. IEEE International Electron Devices Meeting. 2018. P. 6.2.1-6.2.4. San Francisco, CA.
5. Stojanovic V.M. Feasibility of single-shot realizations of conditional three-qubit gates in exchange-coupled qubit arrays with local control. Phys. Rev. A. 2019. 99, No 1. P. 012345.
https://doi.org/10.1103/PhysRevA.99.012345
6. Maslov D., Dueck G., Miller D. Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans-actions on VLSI Systems. 2005. 13, No 6. P. 765-769.
https://doi.org/10.1109/TVLSI.2005.844284
7. Saeedi M. and Markov I.L. Synthesis and optimization of reversible circuits - a survey. ACM Comput. Surv. 2013. 45, No 2. Article 21.
https://doi.org/10.1145/2431211.2431220
8. Donald J., Jha N.K. Reversible logic synthesis with Fredkin and Peres gates. J. Emerg. Technol. Comput. Syst. 2008. 4, No 1. Article 2.
https://doi.org/10.1145/1330521.1330523
9. Picton P.D. Modified Fredkin gates in logic design. Microelectron. J. 1994. 25, No 6. P. 437-441.
https://doi.org/10.1016/0026-2692(94)90068-X
10. Szyprowski M., Kerntopf P. Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. Proc. 13th IEEE Conference on Nanotechnology, Beijing, China, 5-8 Aug. 2013. P. 802-807.
https://doi.org/10.1109/NANO.2013.6721034
11. Pla J.J., Tan K.Y., Dehollain J.P. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature. 2013. 496(7445). P. 334-338.
https://doi.org/10.1038/nature12011
12. Zhang X., Li H., Cao G., Xiao M., Guo G. Semiconductor quantum computation. National Science Review. 2019. 6, No 1. P. 32-54.
https://doi.org/10.1093/nsr/nwy153
13. Xue F., Du J.-F., Shi M.-J. et al. Realization of the Fredkin gate by three transition pulses in a nuclear magnetic resonance quantum information processor. Chin. Phys. Lett. 2002. 19, No 8. P. 1048-1050.
https://doi.org/10.1088/0256-307X/19/8/306
14. Rozhdov O., Yuriychuk I., and Deibuk V. Building a generalized Peres gate with multiple control signals. Advances in Intelligent Systems and Computing. 2019. 754. P. 155-164.
https://doi.org/10.1007/978-3-319-91008-6_16
15. Yuriychuk I., Hu Z., and Deibuk V. Effect of the noise on generalized Peres gate operation. Advances in Intelligent Systems and Computing. 2020. 938. P. 428-437.
https://doi.org/10.1007/978-3-030-16621-2_40
| |
|
|