Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 415-423 (2020).
References
1. Lishik S.I., Posedko V.S., Trofimov Yu.V., Tsvirko V.I. Current state, trends and prospectives of the development of Light Emitting Diode technology. Light & Engineering. 2017. 25, Issue 2. P. 13-24.
2. Jaehee Cho, Jun Hyuk Park, Jong Kyu Kim, E. Fred Schubert. White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 2017. Article No 1600147.
https://doi.org/10.1002/lpor.201600147
3. Lasance C.J.M., Poppe A. Thermal Management for LED Applications. Springer Science Business Media, New York, 2014.
https://doi.org/10.1007/978-1-4614-5091-7
4. CITIZEN ELECTRONICS CO., LTD.
https://ce.citizen.co.jp/lighting_led/dl_data/datasheet/en/COB_5/CLU058-3618C4_P3705_0516.pdf(reference date: 08.10.2020).
5. Pekur D.V., Nikolaenko Yu.E., Sorokin V.M. Optimization of the cooling system design for a compact high-power LED luminaire. SPQEO. 2020. 23, No 1. P. 91-101.
6. Ying S.P., Shen W.B. Thermal analysis of high-power multichip COB light-emitting diodes with different chip sizes. IEEE Trans. Electron Devices. 2015. 62, No. 3. P. 896-901.
https://doi.org/10.1109/TED.2015.2390255
7. Baranyuk A.V., Nikolaenko Yu.E., Rohachev V.A., Terekh O.M., Krukovsky P.G. Investigation of the flow structure and heat transfer intensity of surfaces with split plate finning. Therm. Sci. Eng. Progress. 2019. 11. P. 28-39.
https://doi.org/10.1016/j.tsep.2019.03.018
8. Jing W., Xin-Jie Zh., Yi-Xi C., Chun Zh., Wei-Wei B. Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package. Energy Conversion and Management. 2015. 101. P. 532-540.
https://doi.org/10.1016/j.enconman.2015.05.040
9. Huan-Liang Tsai, Phuong Truong Le. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application. Energy Conversion and Management. 2016. 118. Ð. 170-178.
https://doi.org/10.1016/j.enconman.2016.03.077
10. Maaspuro M. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs: A review. Microelectronics Reliability. 2016. 63. P. 342-353.
https://doi.org/10.1016/j.microrel.2016.06.008
11. Xiong D., Zhenbing L., Zhixun X., Weijie G., Lin W. Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator. Energy Conversion and Management. 2017. 132. P. 207-212.
https://doi.org/10.1016/j.enconman.2016.11.034
12. Qu J., Kong L., Zhang J. Experimental investigation on flow and heat transfer characteristics of a needle-cylinder type ionic wind generator for LED cooling. Energies. 2018. 11, Issue 5. Article No 1149.
https://doi.org/10.3390/en11051149
13. Shin D.H., Sohn D.K., Ko H.S. Analysis of thermal flow around heat sink with ionic wind for high-power. Appl. Therm. Eng. 2018. 143. P. 376-384.
https://doi.org/10.1016/j.applthermaleng.2018.07.118
14. Wang J., Cai Y.-X., Li X.-H. et al. Ionic wind development in corona discharge for led cooling. IEEE Trans. Plasma Sci. 2018. 46, No 5. P. 1821-1830.
https://doi.org/10.1109/TPS.2018.2816820
15. Kiseev V., Aminev D., Sazhin O. Two-phase nanofluid-based thermal management systems for LED cooling. IOP Conf. Ser.: Mater. Sci. Eng. 2017. 192, No 1. 012020. P. 1-7.
https://doi.org/10.1088/1757-899X/192/1/012020
16. Melnyk R.S., Nikolaenko Yu.E., Alekseik Ye.S., Kravets V.Yu. Heat transfer limitations of heat pipes for cooling systems of electronic components. The 2017 IEEE First Ukraine Conf. on Electrical and Computer Engineering (UKRCON), Ukraine, Kyiv, May 29 - June 2, 2017. P. 692-695.
https://doi.org/10.1109/UKRCON.2017.8100316
17. Li J., Tian W., Lv L. A thermosyphon heat pipe cooler for high power LEDs cooling. Heat Mass Transfer. 2016. 52. Ð. 1541-1548.
https://doi.org/10.1007/s00231-015-1679-z
18. Nikolaenko Yu.E. Schematics of the architecture of heat rejection from functional modules of a computer with the help of two-phase heat-transfer devices. Upravliayushchie Sistemy i Mashiny. 2005. No 2. P. 29-36 (in Russian).
19. Sosoi G., Vizitiu R.S., Burlacu A. et al. A heat pipe cooler for high power LED's cooling in harsh con-ditions. Procedia Manufacturing. 2019. 32. Ð. 513-519.
https://doi.org/10.1016/j.promfg.2019.02.247
20. Nikolaenko Yu.E., Rotner S.M. Using laser radiation for the formation of capillary structure in flat ceramic heat pipes. Techn. Phys. Lett. 2012. 38, No 12. P. 1056-1058.
https://doi.org/10.1134/S1063785012120085
21. Chen Y., Li B., Wang X., Yan Y., Wang Y., Qi F. Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module. Therm. Sci. Eng. Progress. 2019. 10. Ð. 73-81.
https://doi.org/10.1016/j.tsep.2019.01.007
22. Cai Q., Bhunia A., Tsai C. et al. Studies of material and process compatibility in developing compact silicon vapor chambers. J. Micromechan. and Microeng. 2013. 23, Issue 6. Article No 065003.
https://doi.org/10.1088/0960-1317/23/6/065003
23. Xue Kang, Yiping Wang, Qunwu Huang et al. Phase-change immersion cooling high power light emitting diodes and heat transfer improvement. Microelectronics Reliability. 2017. 79. P. 257-264.
https://doi.org/10.1016/j.microrel.2017.05.033
24. Zohuri B. Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, 2nd ed. Springer, 2016.
https://doi.org/10.1007/978-3-319-29841-2
25. Beletsky V.M., Krivov G.A. Aluminum Alloys (Composition, Properties, Technology, Application). Handbook. Ed. by I.N. Friedlander. Kiev: Comintech, 2005 (in Russian).
26. Physical Quantities. Handbook. Ed. by Grigoriev I.S., Meylikhov E.Z. Moscow: Energoatomizdat, 1991 (in Russian).
27. Delendik K.I., Kolyago N.V., Penyazkov O.G., Voitik O. Development of heat pipes for cooling thermally stressed electronics elements. J. Eng. Phys. Thermophys. 2019. 92. P. 1529-1536.
https://doi.org/10.1007/s10891-019-02073-8
28. Wu Y., Tang Y., Li Z. et al. Experimental inves-tigation of a PCM-HP heat sink on its thermal perfor-mance and antithermal-shock capacity for high-po-wer LEDs. Appl. Therm. Eng. 2016. 108. P. 192-203.
https://doi.org/10.1016/j.applthermaleng.2016.07.127
29. Nikolaenko Yu.E., Kravets V.Yu., Naumova A.N., Baranyuk A.V. Development of the ways to in-crease the lighting energy efficiency of living space. Int. Journal of Energy for a Clean Environment. 2017. 18, No 3. P. 275-285.
https://doi.org/10.1615/InterJEnerCleanEnv.2018021641
30. Nikolaenko T.Yu., Nikolaenko Yu.E. New circuit solutions for the thermal design of chandeliers with Light Emitting Diodes. Light & Engineering. 2015. 23, No 3. P. 85-88.
31. Nikolaenko Yu.E., Pekur D.V., Sorokin V.M. Light characteristics of high-power LED luminaire with a cooling system based on heat pipe. SPQEO. 2019. 22, No 3. Ð. 366-371.
https://doi.org/10.15407/spqeo22.03.366
32. Pekur D.V., Sorokin V.M., Nikolaenko Y.E. Fea-tures of wall-mounted luminaires with different types of light sources. Electrica. 2020. Art. No 20017.
https://doi.org/10.5152/electrica.2020.20017
33. Ñree Inc.
https://www.cree.com/led-components/media/documents/ds-CXB3070.pdf (reference date: 08.10.20).
34. Utility Model Patent of Ukraine No 141753, CI (2020.01) F21V 29/00. V.M. Sorokin, D.V. Pekur, Yu.E. Nikolaenko, LED luminaire. u2019 10273, 09.10.2019. Publ. 27.04.2020. Bul. No 8.
35. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Thermal characteristics of a compact LED lumi-naire with a cooling system based on heat pipes. Therm. Sci. Eng. Progress. 2020. 18. Art. No 100549.
https://doi.org/10.1016/j.tsep.2020.100549
36. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Experimental study of a compact cooling system with heat pipes for powerful led matriõ. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2020. ¹ 3-4. P. 35-41 (in Ukrainian).
https://doi.org/10.15222/TKEA2020.3-4.35
37. Reeth-ledlens co., ltd.
http://www.reeth-ledlens.com/index.asp?industrial/680.html(reference date: 08.10.2020).
38. Munoz V.F., Gomez-de-Gabriel J., Fernandez-Lozano J. et al. An automated goniophotometer for luminaire characterization. IFAC Proc. Volumes. 2002. 35. Issue 1. P. 103-108.
https://doi.org/10.3182/20020721-6-ES-1901.01485
39. Lips S., Meyer J.P. Two-phase flow in inclined tubes with specific reference to condensation: A review. Int. J. Multiphase Flow. 37, N 8. P. 845-859.
https://doi.org/10.1016/j.ijmultiphaseflow.2011.04.005
40. Fadhil O., Al Hadithi M., & Al Hiti H. Experi-mental study of the thermal characteristics for a thermosyphon pipe with finned condenser. Al-Nahrain Journal for Engineering Sciences. 2016. 19, No 2. P. 301-309.
41. Negislii K., Sawada T. Heat transfer performance of an inclined two-phase closed thermosiphon. Int. J. Heat and Mass Transfer. 26, Issue 8. P. 1207-1213.
https://doi.org/10.1016/S0017-9310(83)80175-6
42. Prisniakov K., Marchenko O., Melikaev Yu. et al. About the complex influence of vibrations and gravitational fields on serviceability of heat pipes in composition of space-rocket systems. Acta Astronautica. 2004. 55, Issue 3-9. P. 509-518.
https://doi.org/10.1016/j.actaastro.2004.05.005
43. Marchenko O., Prisniakov K., Prisniakov V., Kravetz V., Nikolaenko Yu. Influence of non-stationary conditions on reliability of space systems with heat pipes under the effect of vibrations. 55th Intern. Astronautical Congress of the Intern. Astronautical Federation, the Intern. Academy of Astronautics, and the Intern. Institute of Space Law, Intern. Astronautical Congress (IAF), Vancouver, British Columbia, Canada. 2004. 4. P. 2301-2311.
44. Zaghdoudi M.C., Tantolin C., Sarno C. Effects of acceleration forces on the thermal performances on flat heat pipes with different capillary structures. In: Proc. 16th Intern. Heat Pipe Conference (16th IHPC), Lyon, France. 2012. P. 123-128.
45. Hsu C.C., Chen X.F. and Yang J.M. The effects of shock and vibration on heat pipe performance in reliability tests. 10th Intern. Heat Pipe Conference, Taipei, Taiwan, 2011. P. 267-271.
46. Johnson M. Oceanic Systems introduces processor-cooling heat pipe technology to the marine industry. Oceanic Systems UK Ltd, UK. Press Release. Oct 2018.
https://osukl.com/heat-pipe-tech(reference data: 08.10.2020).
47. Maydanik Y., Pastukhov V., Chernysheva M. Development and investigation of a loop heat pipe with a high heat-transfer capacity. Appl. Therm. Eng. 2018. 130. P. 1052-1061.
https://doi.org/10.1016/j.applthermaleng.2017.11.084
48. Dmitrin V.I., Maidanik Yu.F. Experimental investigations of a closed-loop oscillating heat pipe. High Temperature. 2007. 45, Issue 5. P. 703-707.
https://doi.org/10.1134/S0018151X07050197
49. Pastukhov V.G., Maidanik Y.F., Vershinin C.V. Miniature loop heat pipes for electronics cooling. Appl. Therm. Eng. 2003. 23, Issue 9. P. 1125-1135.
https://doi.org/10.1016/S1359-4311(03)00046-2
50. Maidanik Yu.F. Loop heat pipes. Appl. Therm. Eng. 2005. 25, Issue 5-6. P. 635-657.
https://doi.org/10.1016/j.applthermaleng.2004.07.010
51. Bhuwakietkumjohn N., Rittidech S. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture. Experimental Thermal and Fluid Science. 2010. 34, Issue 8. P. 1000-1007.
https://doi.org/10.1016/j.expthermflusci.2010.03.003
52. Yang H., Khandekar S., Groll M. Operational limit of closed loop pulsating heat pipes. Appl. Therm. Eng. 2008. 28, No 1. P. 49-59.
https://doi.org/10.1016/j.applthermaleng.2007.01.033
53. Lv L., Li J., Zhou G. A robust pulsating heat pipe cooler for integrated high power LED chips. Heat Mass Transfer. 2017. 53. Ð. 3305-3313.
https://doi.org/10.1007/s00231-017-2050-3
54. Nekrashevych I., Nikolayev V. Reprint of: Effect of tube heat conduction on the pulsating heat pipe start-up. Appl. Therm. Eng. 2017. 126. P. 1077-1082.
https://doi.org/10.1016/j.applthermaleng.2017.08.117
| |
|
|