Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 431-436 (2020).


References

1. Yinon J., Ed. Counterterrorist Detection Techniques of Explosives. Elsevier, 2007.

2. Riskin M., Ben-Amram Y., Tel-Vered R., Chegel V., Almog J., and Willner I. Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of penta-erythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal. Chem. 2011. 83, No 8. P. 3082-3088.
https://doi.org/10.1021/ac1033424

3. Lopatynskyi A.M., Lytvyn V.K., Nazarenko V.I., Guo L.J., Lucas B.D., and Chegel V.I. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography. Nanoscale Res. Lett. 2015. 10, No 1. P. 99.
https://doi.org/10.1186/s11671-015-0819-1

4. Willets K.A. and Van Duyne R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007. 58, No 1. P. 267-297.
https://doi.org/10.1146/annurev.physchem.58.032806.104607

5. Hutter E. and Fendler J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004. 16, No 19. P. 1685-1706.
https://doi.org/10.1002/adma.200400271

6. Petryayeva E. and Krull U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review. Analytica Chimica Acta. 2011. 706, No 1. P. 8-24.
https://doi.org/10.1016/j.aca.2011.08.020

7. Sekhon J.S. and Verma S.S. Rational selection of nanorod plasmons: material, size, and shape dependence mechanism for optical sensors. Plasmonics. 2012. 7, No 3. P. 453-459.
https://doi.org/10.1007/s11468-012-9328-6

8. Ringe E., Zhang J., Langille M.R. et al. Effect of size, shape, composition, and support film on localized surface plasmon resonance frequency: A single particle approach applied to silver bipyramids and gold and silver nanocubes. MRS Proc. 2009. 1208. P. 1208-O10-02.
https://doi.org/10.1557/PROC-1208-O10-02

9. Tabor C., Murali R., Mahmoud M., and El-Sayed M.A. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A. 2009. 113, No 10. P. 1946-1953.
https://doi.org/10.1021/jp807904s

10. Zalyubovskiy S.J., Bogdanova M., Deinega A. et al. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. J. Opt. Soc. Am. A. 2012. 29, No 6. P. 994-1002.
https://doi.org/10.1364/JOSAA.29.000994

11. Murray W.A., Auguie B., and Barnes W.L. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J. Phys. Chem. C. 2009. 113, No 13. P. 5120-5125.
https://doi.org/10.1021/jp810322q

12. Zhao J., Zhang X., Yonzon C.R., Haes A.J., and Van Duyne R.P., Localized surface plasmon resonance biosensors. Nanomedicine. 2006. 1, No 2. P. 219-228.
https://doi.org/10.2217/17435889.1.2.219

13. Yoon S.J. and Kim D. Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. J. Opt. Soc. Am. A. 2008. 25, No 3. P. 725.
https://doi.org/10.1364/JOSAA.25.000725

14. Bingham J.M., Anker J.N., Kreno L.E., and Van Duyne R.P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2010. 132, No 49. P. 17358-17359.
https://doi.org/10.1021/ja1074272

15. Cheng C.-S., Chen Y.-Q., and Lu C.-J. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta. 2007. 73, No 2. P. 358-365.
https://doi.org/10.1016/j.talanta.2007.03.058

16. Whitcombe M.J., Chianella I., Larcombe L. et al. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011. 40, No 3. P. 1547-1571.
https://doi.org/10.1039/C0CS00049C

17. Thoelen R., Vansweevelt R., Duchateau J. et al. A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosensors and Bioelectronics. 2008. 23, No 6. P. 913-918.
https://doi.org/10.1016/j.bios.2007.08.020

18. Chianella I., Piletsky S.A., Tothill I.E., Chen B., and Turner A.P.F. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosensors and Bioelectronics. 2003. 18, No 2-3. P. 119-127.
https://doi.org/10.1016/S0956-5663(02)00165-3

19. Pan J., Chen W., Ma Y., and Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018. 47, No 15. P. 5574-5587.
https://doi.org/10.1039/C7CS00854F

20. Mijangos I., Guerreiro A., Piletska E. et al. Macroradical initiated polymerisation of acrylic and methacrylic monomers. J. Sep. Science. 2009. 32, No 19. P. 3340-3346.
https://doi.org/10.1002/jssc.200900216

21. Tokareva I., Tokarev I., Minko S., Hutter E., and Fendler J.H. Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chem. Commun. 2006. 31. P. 3343.
https://doi.org/10.1039/b604841b

22. Chen B., Liu C., Sun X., and Hayashi K. Molecularly imprinted polymer coated Au nanoparticle sensor for ?-pinene vapor detection, in: 2013 IEEE SENSORS, Baltimore, MD, USA, 2013. P. 1-4.
https://doi.org/10.1109/ICSENS.2013.6688152

23. Jun Matsui, Kensuke Akamatsu, Shingo Nishiguchi et al. Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal. Chem. 2004. 76, No 5. P. 1310-1315.
https://doi.org/10.1021/ac034788q

24. Chen B., Liu C., and Hayashi K. Selective terpene vapor detection using molecularly imprinted polymer coated Au nanoparticle LSPR Sensor. IEEE Sensors J. 2014. 14, No 10. P. 3458-3464.
https://doi.org/10.1109/JSEN.2014.2346187

25. Cennamo N., Dona A., Pallavicini P. et al. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sensors and Actuators B: Chemical. 2015. 208. P. 291-298.
https://doi.org/10.1016/j.snb.2014.10.079

26. Chegel V.I., Lytvyn V.K., Lopatynskyi A.M., Shepeliavyi P.E., Lytvyn O.S., Goltvyanskyi Yu.V. Plasmon-enhanced fluorometry based on gold nanostructure arrays. Method and device. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18, No 3. P. 272-278.
https://doi.org/10.15407/spqeo18.03.272