Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 431-436 (2020).


1. Yinon J., Ed. Counterterrorist Detection Techniques of Explosives. Elsevier, 2007.

2. Riskin M., Ben-Amram Y., Tel-Vered R., Chegel V., Almog J., and Willner I. Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of penta-erythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal. Chem. 2011. 83, No 8. P. 3082-3088.

3. Lopatynskyi A.M., Lytvyn V.K., Nazarenko V.I., Guo L.J., Lucas B.D., and Chegel V.I. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography. Nanoscale Res. Lett. 2015. 10, No 1. P. 99.

4. Willets K.A. and Van Duyne R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007. 58, No 1. P. 267-297.

5. Hutter E. and Fendler J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004. 16, No 19. P. 1685-1706.

6. Petryayeva E. and Krull U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review. Analytica Chimica Acta. 2011. 706, No 1. P. 8-24.

7. Sekhon J.S. and Verma S.S. Rational selection of nanorod plasmons: material, size, and shape dependence mechanism for optical sensors. Plasmonics. 2012. 7, No 3. P. 453-459.

8. Ringe E., Zhang J., Langille M.R. et al. Effect of size, shape, composition, and support film on localized surface plasmon resonance frequency: A single particle approach applied to silver bipyramids and gold and silver nanocubes. MRS Proc. 2009. 1208. P. 1208-O10-02.

9. Tabor C., Murali R., Mahmoud M., and El-Sayed M.A. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A. 2009. 113, No 10. P. 1946-1953.

10. Zalyubovskiy S.J., Bogdanova M., Deinega A. et al. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. J. Opt. Soc. Am. A. 2012. 29, No 6. P. 994-1002.

11. Murray W.A., Auguie B., and Barnes W.L. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J. Phys. Chem. C. 2009. 113, No 13. P. 5120-5125.

12. Zhao J., Zhang X., Yonzon C.R., Haes A.J., and Van Duyne R.P., Localized surface plasmon resonance biosensors. Nanomedicine. 2006. 1, No 2. P. 219-228.

13. Yoon S.J. and Kim D. Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. J. Opt. Soc. Am. A. 2008. 25, No 3. P. 725.

14. Bingham J.M., Anker J.N., Kreno L.E., and Van Duyne R.P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2010. 132, No 49. P. 17358-17359.

15. Cheng C.-S., Chen Y.-Q., and Lu C.-J. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta. 2007. 73, No 2. P. 358-365.

16. Whitcombe M.J., Chianella I., Larcombe L. et al. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011. 40, No 3. P. 1547-1571.

17. Thoelen R., Vansweevelt R., Duchateau J. et al. A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosensors and Bioelectronics. 2008. 23, No 6. P. 913-918.

18. Chianella I., Piletsky S.A., Tothill I.E., Chen B., and Turner A.P.F. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosensors and Bioelectronics. 2003. 18, No 2-3. P. 119-127.

19. Pan J., Chen W., Ma Y., and Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018. 47, No 15. P. 5574-5587.

20. Mijangos I., Guerreiro A., Piletska E. et al. Macroradical initiated polymerisation of acrylic and methacrylic monomers. J. Sep. Science. 2009. 32, No 19. P. 3340-3346.

21. Tokareva I., Tokarev I., Minko S., Hutter E., and Fendler J.H. Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chem. Commun. 2006. 31. P. 3343.

22. Chen B., Liu C., Sun X., and Hayashi K. Molecularly imprinted polymer coated Au nanoparticle sensor for ?-pinene vapor detection, in: 2013 IEEE SENSORS, Baltimore, MD, USA, 2013. P. 1-4.

23. Jun Matsui, Kensuke Akamatsu, Shingo Nishiguchi et al. Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal. Chem. 2004. 76, No 5. P. 1310-1315.

24. Chen B., Liu C., and Hayashi K. Selective terpene vapor detection using molecularly imprinted polymer coated Au nanoparticle LSPR Sensor. IEEE Sensors J. 2014. 14, No 10. P. 3458-3464.

25. Cennamo N., Dona A., Pallavicini P. et al. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sensors and Actuators B: Chemical. 2015. 208. P. 291-298.

26. Chegel V.I., Lytvyn V.K., Lopatynskyi A.M., Shepeliavyi P.E., Lytvyn O.S., Goltvyanskyi Yu.V. Plasmon-enhanced fluorometry based on gold nanostructure arrays. Method and device. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18, No 3. P. 272-278.