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Abstract. Elastic properties of the CdTe1–xSex (x = 1/16) solid solution in the framework of 

the density functional theory calculations have been investigated. The structure of the 

sample has been constructed using that of the original binary compound CdTe, which 

crystallizes in the cubic phase. The Young modulus, shear modulus, bulk modulus and 

Poisson ratio have been calculated theoretically. On the results for elastic coefficients, 

value of acoustic velocity and Debye temperature have been obtained. The obtained values 

are in good agreement with experimental data. 
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1. Introduction 

The AIIBVI semiconductor compounds and their solid 

solutions, such as CdTeSe, have attracted considerable 

attention in both fundamental research and technological 

applications because of their wide use in fabrication  
of various optoelectronic devices [1-10]. This 

semiconducting solid solution demonstrates high values 

of the absorption coefficient and the possibility to adjust 

its band-gap by changing the content of Se for effective 

solar energy conversion [11]. 

CdTe compounds have a cubic (zinc blende) 

structure [12, 13], whereas CdSe compounds depending 

on the growth condition may have both sphalerite and 

wurtzite (hexagonal) structures under normal conditions 

[14-16], but the sphalerite CdSe structure is unstable and 

converts to the wurtzite form after moderate heating [17]. 

Taking into account its phase diagram [18], it was 
observed that CdTeSe crystallizes in the cubic structure 

with the concentration of CdSe compound below ~0.33 

and wurtzite structure above ~0.55. 

Up to now, we have found some information about 

physical properties of CdTeSe solid solution [9-11,  

19-24]. Considerable attention of researchers is focused 

on the study of structural, optical, and electronic 

properties inherent to CdTeSe films [25] examined for 

different Se concentrations improving the performance of 

CdTe-based thin-film solar cells, the effectiveness of 

which is largely limited by the concentration of doping 
and the lifetime of minority carriers.  

Despite the recent intensive experimental and 

theoretical study of these materials, some of the 
fundamental parameters remain currently unknown. One 

of the central problems of these solid solutions is their 
mechanical properties. This information is very 

important for modeling and developing parts for optical 
and electronic devices. Introduction of a small amount of 

Se into the CdTe structure should cause the appearance 

of impurity energy levels located inside the band gap of 
the host material. Since the band-energy structure of the 

material determines its main optical and electrophysical 
properties, this problem is quite relevant. 

We found some works related with theoretical 
calculation of electron band structure [3, 7, 8, 13, 14, 21, 
22, 26-28], optical parameters [13, 14, 22, 23] and 
effective mass [28-30]. But none of them used the  
CdTe1–xSex (x = 1/16; Cd16Te15Se) composition in cubic 
structure for the calculation. We didn’t find any infor-
mation about calculation of effective mass, sound velocity 
and elastic properties for Cd16Te15Se solid solution. 

In this paper, we report elastic properties of the 
Cd16Te15Se solid solution. The sample of Cd16Te15Se was 

prepared using the parent compound CdTe (cubic 
structure), where Te atoms were substituted with Se. The 

acoustic velocity and Debye temperature of the sample 
were calculated using the obtained elastic modules. 
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2. Methods of calculation 

The elastic properties of Cd16Te15Se solid solutions have 
been calculated in the framework of the density 

functional theory (DFT) [31] by using CASTEP code 

[32]. In these calculations, the generalized gradient 

approximation (GGA) and the Perdew–Burke–

Ernzerhof (PBESOL) exchange-and-correlation 

functional [33] were used. Within the method used, the 

electronic wave functions were expanded in a plane 

wave basis set with the energy cut-off at 310 eV. The 

electron configurations 4d105s2 for Cd, 5s25p4 for Te 

and 4s24p4 for Se atoms formed the valence electron 

states. The 4×2×2 Monkhorst–Pack mesh has been used 

for the Brillouin zone (BZ) sampling [34]. The self-
consistent convergence of the total energy was taken as 

5.0×10–7 eV/atom. For DFT calculations of Cd16Te15Se 

solid solutions, the 2×1×2 supercell containing 32 

atoms was created (see Figure). The triclinic symmetry 

P1 was used for the optimized structure of the crystal 

supercell Cd16Te15Se. Geometry optimization of the 

lattice parameters and atomic coordinates were 

performed using the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) minimization technique with the 

maximum ionic Hellmann–Feynman forces within 

0.01 eV/Å, the maximum ionic displacement within 
5.0×10–4 Å, and the maximum stress within 0.02 GPa. 

These parameters are sufficiently small to lead to a well-

converged total energy of the studied structures. 

3. Results and discussion 

Elastic properties play an important role in providing 

valuable information about the bonding characteristics 

between adjacent atomic planes, they can determine how 

the material undergoes stress deformation and then 

recovers to its original shape after stress cessation. Also, 

these properties play an important role in providing 
valuable information on structural stability, anisotropic 

factors, Debye temperature, phonon spectra and specific 

heat. All this information is usually defined by the elastic 

constants Cij [35]. The used calculation method allows 

obtaining the total energy E for arbitrary crystal 

structures. 

 

 

 

 
View of Cd16Se15Te crystal 2×1×2 supercell. 

 

One can deform the calculated equilibrium crystal 

structure, determine the total energy of the strained 

crystal E and use the obtained results to estimate the 

elastic constants. They are proportional to the second-

order coefficient in the polynomial expansion of the total 

energy E as a function of the strain parameter δ. Only 

small deformations that did not exceed the crystal 

elasticity limit were taken into consideration during 

calculations. Knowing the total crystal energy E and its 

variation caused by the strain δ, one can determine nine 

elastic constants from the following equations: 
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In Eqs (1), V is the supercell volume. Here, the 

elastic constants C12, C13, and C23 were defined as linear 

combinations of the already obtained constants C11, C22, 

and C33. The calculated elastic constants Cij of 

Cd16Te15Se are presented in Table 1. 

The theoretical polycrystalline elastic modulus of 

Cd16Se15Te solid solution can be determined using two 

approximation methods, namely: the Voigt and Reuss 

methods [36]. The Voigt method assumes the uniform 

strain throughout the polycrystalline aggregate, while the 

Reuss one assumes the uniform stress. The bulk modulus 

B, Young’s modulus E, shear modulus G and Poisson’s 

ratio σ were calculated directly by the Voigt–Reuss–Hill 

(VRH) method [37] (Table 2). 
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Table 1. Calculated elastic constants of Cd16Se15Te solid 
solution. 

 

Elastic constant Cij  
(i, j = 1,2,…,6) 

Value of Cij (GPa) 

C11 35.80 ± 9.69 

C22 41.04 ± 5.75 

C33 35.88 ± 4.01 

C44 53.49 ± 9.06 

C55 52.57 ± 5.04 

C66 28.99 ± 2.87 

C12 47.87 ± 2.36 

C13 53.01 ± 3.06 

C23 46.34 ± 3.54 

 
 

Table 2. The calculated values of shear modulus (G), bulk 

modulus (B), Young’s modulus (E), and Poisson’s ratio (σ) for 
Cd16Te15Se solid solution. 

 

 Voigt Reuss Hill 

B, GPa 45.24 45.65 45.93 

G, GPa 22.55 30.21 29.87 

B/G 2.01 1.51 1.54 

E, GPa 50.39 63.48 53.46 

σ 0.31 0.27 0.30 

 
 

Table 3. The calculated acoustic velocities in different 
directions of Cd16Te15Se solid solution. 

 

]001[
l , 

m·s–1 

]001[
t , 

m·s–1 

]111[
l , 

m·s–1 
 , m·s–1 θD, K 

2440.6 2983.3 4377.5 3267.1 303.9 

 
 

According to the elastic criteria, the material is 

brittle (ductile), if the B/G ratio is less (greater) than 

1.75. The calculated values B/G of Cd16Te15Se are 

smaller than 1.75 [38] when being obtained by the Reuss 

and Hill methods, hence, the studied material should 

probably behave in a brittle manner. The Poisson ratio of 

a stable, isotropic, linear elastic material must be between 

−1.0 and +0.5, because of the requirement for Young’s 

modulus, the shear modulus and bulk modulus must have 

positive values [39]. According to Frantsevich rule [40], 
the critical value of the Poisson ratio for a material is 1/3 

[41]. The value of Poisson’s ratio σ, responsible for 

ductile (σ > 1/3) or brittle (σ < 1/3) character, 

corresponds in our case to the brittle one (σ < 1/3). The 

value of the Poisson ratio is indicative of the degree of 

directionality of the covalent bonds. This value is 

relatively small (σ = 0.1) for the covalent materials and 

relatively large (σ = 0.25) for the ionic ones. The 

calculated Poisson ratio σ for Cd16Te15Se lies within the 

range 0.27…0.31. 

Knowing the elastic constants Cij of a material,  
one can calculate the corresponding acoustic velocities  

in  certain  directions.  The values of acoustic velocity  in 

 

different directions of Cd16Se15Te crystal were calculated 

using the respective relations [42]: 
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where ρ is the crystal density. The calculated value of 

density ρ is 6.01 g·cm–3. This value is in good agreement 

with the experimental one for pure CdTe [43]. The 

calculated acoustic velocities in different directions are 

presented in Table 3. 

The Debye temperature θD is one of the most 

important parameters that determines the thermal 

properties of material. The Debye temperature can be 

defined in terms of mean acoustic velocity and gives 

explicit information about lattice vibrations. This is the 

highest temperature that corresponds to the highest 

frequency normal vibration D (
B

D
D k

h
 , where 

kB = 1.380658·10–23 J·K–1). At relatively low tempe-

ratures, vibrational excitations arise mainly due to 

acoustic oscillations. Therefore, the value of θD, 

calculated from the elastic constants, is the same as that 

determined by specific heat measurements at relatively 

low temperatures. 

Using the mean acoustic velocity, the Debye 

temperature is calculated from Eq. (5). 
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where N is the number of atoms in the supercell of 
Cd16Te15Se, V0 – supercell volume. The obtained value of 

Debye temperature is in good correlation with other 

known θD values for binary compounds (295.6 K for 

CdTe and 317.6 K for CdSe at 298 K [44]). 

3. Conclusions 

In this work, elastic properties, Debye temperatures and 

acoustic velocity for Cd16Te15Se solid solution are 

estimated using the first-principles calculations. The 

calculations were performed within the generalized 

gradient approximation (GGA) with the Perdew–Burke–

Ernzerhof (PBESOL) exchange-and-correlation 

functional. Using the Voigt–Reuss–Hill approximation, 

the ideal polycrystalline aggregates bulk modulus, shear 

modulus, Young’s modulus, and Poisson’s ratio have 

been calculated and discussed. The obtained values are in 

good agreement with experimental data and correlate 

well with the values observed for binary compounds 

CdSe and CdTe. 
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Пружні властивості твердого розчину CdTe1–xSex (x = 1/16): Дослідження з перших принципів 

 

H.A. Ільчук, Д.В. Корбутяк, А.І. Кашуба, Б. Андрієвський, І.М. Купчак, Р.Ю. Петрусь, І.В. Семків 

 

Анотація. Досліджено пружні властивості твердого розчину CdTe1–xSex (x = 1/16) в рамках розрахунків теорії 

функціонала густини. Структура зразка побудована на вихідній бінарній сполуці CdTe, яка кристалізується в 

кубічній фазі. Модуль Юнга, модуль зсуву, об’ємний модуль та коефіцієнт Пуассона обчислено теоретично. 

За результатами коефіцієнтів пружності отримано значення акустичної швидкості та температури Дебая. 
Отримані значення добре узгоджуються з експериментальними даними. 

 

Ключові слова: твердий розчин, пружні властивості, акустична швидкість, температура Дебая. 

 


