Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 372-377 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.372


References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argy-rodites - a new family of tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14, No 2. P. 241-248. https://doi.org/10.1016/0025-5408(79)90125-9

2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142

3. Belin R., Zerouale A., Pradel A., Ribes M. Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra. Solid State Ionics. 2001. 143. P. 445-455. https://doi.org/10.1016/S0167-2738(01)00883-9

4. Studenyak I.P., Pogodin A.I., Luchynets M.M., Studenyak V.I., Kokhan O.P., Kus P. Impedance studies and electrical conductivity of (Cu1-xAgx)7GeSe5I mixed crystals. J. Alloys and Compd. 2020. 817. P. 152792. https://doi.org/10.1016/j.jallcom.2019.152792

5. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Influence of cation substitution on electrical conductivity of microcrystalline ceramics based on (Cu1-xAgx)7GeSe5I solid solutions. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2021. 24, No 2. P. 131-138.

6. Bilanych V.S., Skubenych K.V., Kranjcec M., Studenyak I.P. Mechanical properties of superionic crystals, glasses and composites, in: Copper and Silver Containing Superionic Conductors: Preparation, Structure and Physical Properties: monograph. Ed. by Ihor Studenyak and Vladimir Lisy. Kosice: Technicka univerzita v Kosiciach, 2020. P. 187-240.

7. Pogodin A.I., Luchynets M.M., Filep M.Y., Kokhan O.P., Studenyak ≤.P. Synthesis, growth and srtructural properties of (Cu1-xAgx)7GeSe5I solid solutions. Scientific Herald of Uzhhorod University: Ser. Physics. 2019. 45. P. 7-13.

8. Filho P., Cavalcante T., Albuquerque V., Tavares J. Brinell and Vickers hardness measurement using image processing and analysis techniques. Journal of Testing and Evaluation. 2010. 38, No 1. P. 88-94. https://doi.org/10.1520/JTE102220

9. Nabarro F.R.N., Shrivastava S., Luyckx S.B. The size effect in microindentation. Phil. Mag. 2006. 86, No 25-26. P. 4173-4180. https://doi.org/10.1080/14786430600577910

10. Begley M.R., Hutchinson J.W. The mechanics of size-dependent indentation. J. Mech. Phys. Solids. 1998. 46, No 10. P. 2049-2068. https://doi.org/10.1016/S0022-5096(98)00018-0

11. Gao H., Huang Y., Nix W.D., Hutchinson J.W. Mechanism based strain gradient plasticity - I. Theory. J. Mech. Phys. Solids. 1999. 47, No 6. P. 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3

12. Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998. 46, No 3. P. 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0

13. Bendak A.V., Skubenych K.V., Pogodin A.I., Bilanych V.S., Kranjcec M., Studenyak I.P. Influence of cation substitution on mechanical properties of (Cu1-xAgx)7GeSe5I mixed crystals and composites on their base. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2020. 23, No 1. P. 37-40. https://doi.org/10.15407/spqeo23.01.037

14. House J.E. Chapter 7. Ionic Bonding and Structures of Solids. Inorganic —hemistry (2nd edition). Elsevier, 2013. P. 201-242. https://doi.org/10.1016/B978-0-12-385110-9.00007-8