Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 378-389 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.378


References

1. Johnson N.M., Moyer M.D. Absence of oxygen diffusion during hydrogen passivation of shallow acceptor impurities in single crystal silicon. Appl. Phys. Lett. 1985. 46. P. 789-787. https://doi.org/10.1063/1.95883

2. Kitajima M., Ishioka K., Nakanoya K. et al. Three different forms of hydrogen molecules in silicon. Jpn. J. Appl. Phys. 1999. 38. P. L691-L693. https://doi.org/10.1143/JJAP.38.L691

3. Jadhavar A., Pawbake A., Waykar R. et al. Influence of RF power on structural optical and electrical properties of hydrogenated nano-crystalline silicon (nc-Si:H) thin films deposited by PE-CVD. J. Mater. Sci.: Mater. Electron. 2016. 27. P. 12365-12373. https://doi.org/10.1007/s10854-016-5024-1

4. Dail X., Cai H., Zhang D. et al. Annealing induced amorphous/crystalline silicon interface passivation by hydrogen atom diffusion. J. Mater. Sci.: Mater. Electron. 2016. 27. P. 705-710. https://doi.org/10.1007/s10854-015-3806-5

5. Gotoha K., Wilde M., Ogura S. et al. Impact of chemically grown silicon oxide interlayers on the hydrogen distribution at hydrogenated amorphous silicon/crystalline silicon heterointerfaces. Appl. Surf. Sci. 2021. 567. P. 150799. https://doi.org/10.1016/j.apsusc.2021.150799

6. Chena T.C., Yub I.S., Yang Z.P. Hydrogenation behaviors in passivated emitter and rear silicon solar cells with variously hydrogenated SiNx films. Appl. Surf. Sci. 2020. 521. P. 146386. https://doi.org/10.1016/j.apsusc.2020.146386

7. Hallam B.J., Hamer P.G., Ciesla A.M. et al. Development of advanced hydrogenation processes for silicon solar cells via an improved understanding of the behaviour of hydrogen in silicon. Prog. Photovolt. Res. Appl. 2020. 28, No 1. P. 3240. https://doi.org/10.1002/pip.3240

8. Abdurrazaq A., Raji A.T., Meyer W.E. Ab initio study of the effect of hydrogen passivation on boron-oxygen-carbon related defect complexes in silicon. Mater. Sci. Semicond. Process. 2020. 110. P. 104967. https://doi.org/10.1016/j.mssp.2020.104967

9. Vidhya Y.E.B., Vasa N.J. Enhanced electrical cha-racteristics of a-Si thin films by hydrogen passive-tion with Nd3+:YAG laser treatment in under water for photovoltaic applications. Appl. Phys. A. 2017. 123. P. 528. https://doi.org/10.1007/s00339-017-1130-z

10. Pal S., Barrirero J., Lehmann M. et al. Quantifica-tion of hydrogen in nanostructured hydrogenated passivating contacts for silicon photovoltaics combining SIMS-APT-TEM: A multiscale correla-tive approach. Appl. Surf. Sci. 2021. 555. P. 149650. https://doi.org/10.1016/j.apsusc.2021.149650

11. Sharma R., Chong A.P., Lib J.B. et al. Role of post-metallization anneal sequence and forming gas anneal to mitigate light and elevated temperature induced degradation of multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells. 2019. 195. P. 160-167. https://doi.org/10.1016/j.solmat.2019.02.036

12. Reynolds N.D., Panda C.D., Essick J.M. Capacitance-voltage profiling: Research-grade approach versus low-cost alternatives. Am. J. Phys. 2014. 82, No 3. P. 196-205. https://doi.org/10.1119/1.4864162

13. Rahman Md.M., Udoy A.B. Investigation of surface passivation schemes for p-type monocrystalline silicon solar cell. Appl. Phys. A. 2016. 122. P. 926. https://doi.org/10.1007/s00339-016-0434-8

14. Chena D., Hamer P.G., Kima M. et al. Hydrogen induced degradation: A possible mechanism for light- and elevated temperature-induced degradation in n-type silicon. Solar Energy Materials and Solar Cells. 2018. 185. P. 174-182. https://doi.org/10.1016/j.solmat.2018.05.034

15. Wu Z., Zhang L., Liu W. et al. Role of hydrogen in modifying a-Si:H/c-Si interface passivation and band alignment for rear-emitter silicon heterojunction solar cells. J. Mater. Sci.: Mater. Electron. 2020. 31. P. 9468-9474. https://doi.org/10.1007/s10854-020-03486-5

16. You J., Liu H., Qu M. et al. Hydrogen-rich c-Si in-terfacial modification to obtain efficient passivation for silicon heterojunction solar cell. J. Mater. Sci.: Mater. Electron. 2020. 31. P. 14608-14613. https://doi.org/10.1007/s10854-020-04023-0

17. Bao S., L.Yang L., J. Huang J. et al. The rapidly reversible processes of activation and deactivation in amorphous silicon heterojunction solar cell under extensive light soaking. J. Mater. Sci.: Mater. Electron. 2021. 32. P. 4045-4052. https://doi.org/10.1007/s10854-020-05146-0

18. Yang P., Zeng X. Effect of hydrogenated silicon film microstructure on the surface states of n-type silicon nanowires and solar cells. J. Mater. Sci.: Mater. Electron. 2021. 32. P. 3066-3071. https://doi.org/10.1007/s10854-020-05056-1

19. Lee S.H., Bhopal M.F., Lee D.W. et al. Review of advanced hydrogen passivation for high efficient crystalline silicon solar cells. Mater. Sci. Semicond. Process. 2018. 79. P. 66-73. https://doi.org/10.1016/j.mssp.2018.01.019

20. Sharma R., Chong A.P., Li J. B. et al. Role of post-metallization anneal sequence and forming gas anneal to mitigate light and elevated temperature induced degradation of multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells. 2019. 195. P. 160-167. https://doi.org/10.1016/j.solmat.2019.02.036

21. Yadav T.S., Sharma A.K., Kottantharayil A. et al. Comparative study of different silicon oxides used as interfacial passivation layer (SiNy:H/SiOx/n+-Si) in industrial monocrystalline silicon solar cells. Solar Energy Materials and Solar Cells. 2019. 201. P. 110077. https://doi.org/10.1016/j.solmat.2019.110077

22. Belfennache D., Madi D., N. Brihi N. et al. Mechanism for phosphorus deactivation in silicon-based Schottky diodes submitted to MW-ECR hydrogen plasma. Appl. Phys. A. 2018. 124. P. 697. https://doi.org/10.1007/s00339-018-2118-z

23. Letty E., Veirman J., Favre W. et al. Bulk defect formation under light soaking in seed-end n-type Czochralski silicon wafers - Effect on silicon heterojunction solar cells. Solar Energy Materials and Solar Cells. 2017. 166. P. 147-156. https://doi.org/10.1016/j.solmat.2017.03.019

24. Chatbouri S., Troudi M., Kalboussi A. et al. Interface traps contribution on transport mechanisms under illumination in metal-oxide-semiconductor structures based on silicon nanocrystals. Appl. Phys. A. 2018. 124. P. 114. https://doi.org/10.1007/s00339-017-1533-x

25. Vinod P.N. The capacitance-voltage measurement of the screen-printed silicon solar cells with electrochemically etched nanostructured porous silicon antireflection coating. J. Mater. Sci.: Mater. Electron. 2013. 24. P. 1395-1404. https://doi.org/10.1007/s10854-013-1145-y

26. Barakel D., Ulyashin A., Perichaud I. et al. n-p Junction formation in p-type silicon by hydrogen ion implantation. Solar Energy Materials and Solar Cells. 2002. 72. P. 285-290. https://doi.org/10.1016/S0927-0248(01)00176-3

27. Somana A., Antony A. A critical study on different hydrogen plasma treatment methods of a-Si:H/c-Si interface for enhanced defect passivation. Appl. Surf. Sci. 2021. 553. P. 149551. https://doi.org/10.1016/j.apsusc.2021.149551

28. Yoon S.F., Tan K.H., Zhang Q. et al. Effect of microwave power on the electron energy in electron cyclotron resonance plasma. Vacuum. 2001. 61. P. 29-35. https://doi.org/10.1016/S0042-207X(00)00429-2

29. Velichko O.I., Shaman Y.P., Kovaliova A.P. Simulation of hydrogen diffusion and boron passivation in crystalline silicon. Modelling Simul. Mater. Sci. Eng. 2014. 22. P. 035003. https://doi.org/10.1088/0965-0393/22/3/035003

30. Chen D., Hamer P., Kim M. et al. Hydrogen-induced degradation: Explaining the mechanism behind light- and elevated temperature-induced degradation in n- and p-type silicon. Solar Energy Materials and Solar Cells. 2020. 207. P. 110353. https://doi.org/10.1016/j.solmat.2019.110353

31. Nickel N.H. Hydrogen transport in doped and undoped polycrystalline silicon. Microelectronics Reliability. 2007. 47. P.899-902. https://doi.org/10.1016/j.microrel.2006.10.014

32. Song L., Wenham A., Wang S. et al. Laser enhanced hydrogen passivation of silicon wafers. Int. J. Photoenergy. 2015. 122. ID 193892. https://doi.org/10.1155/2015/193892

33. Rizk R., de Mierry P., Ballutaud D. et al. Hydrogen diffusion and passivation processes in p- and n-type crystalline silicon. Phys. Rev. B. 1991. 44. P. 6141-6151. https://doi.org/10.1103/PhysRevB.44.6141

34. Herring C., Johnson N.M., Chiris G. et al. Energy levels of isolated interstitial hydrogen in silicon. Phys. Rev. B. 2001. 12. P. 125209. https://doi.org/10.1103/PhysRevB.64.125209

35. Choi S.J., Yu G.J., Kang G.H. et al.The electrical properties and hydrogen passivation effect in mono crystalline silicon solar cell with various pre-deposition times in doping process. Renewable Energy. 2013. 54. P. 96-100. https://doi.org/10.1016/j.renene.2012.08.052

36. Stavola M., Kleekajai S., Wen L. et al. IR characte-rization of hydrogen in crystalline silicon solar cells. Phys. B: Condens. Matter. 2009. 404. P. 5066-5070. https://doi.org/10.1016/j.physb.2009.08.226

37. Lavrov E.V., Hiller M., Weber J., Raman scattering on H2 in platelets in silicon. Phys. B: Condens. Matter. 2009. 404. P. 5085-5088.

38. Ohmi H., Kimoto K., Nomura T. et al. Study on silicon removal property and surface smoothing phenomenon by moderate-pressure microwave hydrogen plasma. Mater. Sci. Semicond. Process. 2021. 129. P. 105780. https://doi.org/10.1016/j.mssp.2021.105780

39. Durr M., Hofer U. Hydrogen diffusion on silicon surfaces. Prog. Surf. Sci. 2013. 88. P. 61-101. https://doi.org/10.1016/j.progsurf.2013.01.001

40. Chaoa D.S., Hsiaob Y.C., Liang J.H. et al. Effects of crystal plane orientation on blistering kinetics and defect evolution in silicon implanted by hydrogen molecular ions. Surface and Coatings Technology. 2020. 394. P. 125872. https://doi.org/10.1016/j.surfcoat.2020.125872

41. Huang Y.L., Ma Y., Job R. et al. Suppression of hydrogen diffusion at the hydrogen-induced platelets in p-type Czochralski silicon. Appl. Phys. Lett. 2005. 86. P 131911. https://doi.org/10.1063/1.1896443

42. Belfennache D., Brihi N., Madi D. Effective phosphorus deactivation in Schottky diodes hydrogenated in MW-ECR plasma reactor. 2016 8th International Conference on Modelling, Identification and Control (ICMIC), 2016. P. 497-502. https://doi.org/10.1109/ICMIC.2016.7804164

43. Schutz-Kuchly T., Slaoui A. Double layer a-Si:H/ SiN:H deposited at low temperature for the passive-tion of n-type silicon. Appl. Phys. A. 2013. 112. P. 863-867. https://doi.org/10.1007/s00339-013-7802-4

44. Weber J., Knack S., Feklisova O.V. et al. Hydrogen penetration into silicon during wet-chemical etching. Microelectron. Eng. 2003. 66. P. 320-326. https://doi.org/10.1016/S0167-9317(02)00926-7

45. Amor S.B., Atyaoui M., Bousbih R. et al. Effect of substrate temperature on microstructure and optical properties of hydrogenated nanocrystalline Si thin films grown by plasma enhanced chemical vapor deposition. Solar Energy. 2014. 108. P. 126-134. https://doi.org/10.1016/j.solener.2014.06.024

46. Fukata N., Sato S., Fukuda S. et al. Passivation and reactivation of carriers in B- and P-doped Si treated with atomic hydrogen. Phys. B: Condens. Matter. 2007. 401-402. P. 175-178. https://doi.org/10.1016/j.physb.2007.08.140

47. Fukata N., Sato S., Morihiro H. et al. Dopant dependence on passivation and reactivation of carrier after hydrogenation. J. Appl. Phys. 2007. 101. P. 46107. https://doi.org/10.1063/1.2654831

48. Meddeb H., Bearda T., Abdelwahab I. et al. Thermal, structural and electrical study of the effect of annealing on the passivation by amorphous silicon of n-type crystalline (100) silicon surfaces. Energy Procedia. 2014. 55. P. 818-826. https://doi.org/10.1016/j.egypro.2014.08.065

49. Johnson N.M., Herring C., Van de Walle C.G. Inverted order of acceptor and donor levels of monatomic hydrogen in silicon. Phys. Rev. Lett. 1994. 73. P. 130. https://doi.org/10.1103/PhysRevLett.73.130

50. Johnson N.M., Herring C. Diffusion of negatively charged hydrogen in silicon. Phys. Rev. B. 1992. 46, Issue 23. P. 15554-15557. https://doi.org/10.1103/PhysRevB.46.15554

51. Madi D., Focsa A., Roquesa S. et al. Effect of MW-ECR plasma hydrogenation on polysilicon films based solar cells. Energy Procedia. 2010. 2. P. 151-157. https://doi.org/10.1016/j.egypro.2010.07.021