Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 390-398 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.390


References

1. Demianets L.N., Kostomarov D.V., Kuz'mina I.P., Pushko S.V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 2002. 47. P. S86-S98. https://doi.org/10.1134/1.1529962

2. Zhang X., Herklotz F., Hieckmann E., Weber J., Schmidt P. Vapor phase growth of ZnO single crystals. J. Vac. Sci. Technol. A. 2011. 29. 03A107. https://doi.org/10.1116/1.3553461

3. Hupkes J., Muller J., Rech B. Texture Etched ZnO:Al for Silicon Thin Film Solar Cells. Springer Series in Materials Science. 2008. P. 359-413. https://doi.org/10.1007/978-3-540-73612-7_8

4. Wachau A., Schulte J., Agoston P. et al. Sputtered Zn(O,S) buffer layers for CIGS solar modules - from lab to pilot production. Prog. Photovolt.: Res. Appl. 2017. 25. P. 696-705. https://doi.org/10.1002/pip.2880

5. Klingshirn C.F., Waag A., Hoffmann A., Geurts J. Zinc Oxide. From Fundamental Properties towards Novel Applications. Springer Series in Materials Science. Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-10577-7

6. Reynolds D.C., Look D.C., Jogai B. Optically pumped ultraviolet lasing from ZnO. Solid State Commun. 1996. 99. P. 873-875. https://doi.org/10.1016/0038-1098(96)00340-7

7. Frieiro J.L., Guillaume C., Lopez-Vidrier J. et al. Toward RGB LEDs based on rare earth-doped ZnO. Nanotechnology. 2020. 31. P. 465207. https://doi.org/10.1088/1361-6528/abadc9

8. Han J., Senos A.M.R., Mantas P.Q. Varistor behaviour in Mn doped ZnO ceramics. J. Eur. Ceram. Soc. 2002. 22. P. 1653-1660. https://doi.org/10.1016/S0955-2219(01)00484-8

9. Sendi R. Impact of sintering temperatures on conduction behaviors of ZnO nanoparticles- and MnO-doped SnO2-based thick film varistors obtained by screen printing. Modern Phys. Lett. B. 2019. 33. P. 1950336. https://doi.org/10.1142/S0217984919503366

10. Chou C., Chang Y., Lin P., Liu F. Cu-doped ZnO nanowires as highly efficient continuous flow photocatalysts for dynamic degradation of organic pollutants. J. Photochem. Photobiol. A: Chem. 2017. 347. P. 1-8. https://doi.org/10.1016/j.jphotochem.2017.07.010

11. Baran M.P., Korsunskaya N.E., Stara T.R. et al. Graded ZnS/ZnSxO1?x heterostructures produced by oxidative photolysis of zinc sulfide: Structure, optical properties and photocatalytic evolution of molecular hydrogen. J. Photochem. Photobiol. A: Chem. 2016. 329. P. 213-220. https://doi.org/10.1016/j.jphotochem.2016.07.003

12. Markevich I.V., Borkovska L.V., Venger Ye.F. et al. Electrical, optical and luminescent properties of zinc oxide single crystals. Ukr. J. Phys. (Reviews). 2018. 13. P. 57-76.

13. Korsunska N., Borkovska L., Polischuk Yu. et al. Photoluminescence, conductivity and structural study of terbium doped ZnO films grown on different substrates. Mater. Sci. Semicond. Process. 2019. 94. P. 51-56. https://doi.org/10.1016/j.mssp.2019.01.041

14. Venger E.F., Melnichuk A.V., Melnichuk L.Ju., Pasechnik Ju.A. Anisotropy of the ZnO single crystal reflectivity in the region of residual rays. phys. status solidi B. 1995. 188. P. 823-831. https://doi.org/10.1002/pssb.2221880226

15. Melnichuk O., Melnichuk L., Venger E. Phonon and plasmon-phonon interactions in ZnO single crystals and thin films, in: Oxide-Based Materials and Structures: Fundamentals and Applications (Eds. R. Savkina, L. Khomenkova). 2020. Taylor & Francis Group. CRC Press. https://doi.org/10.1201/9780429286728-7

16. Mel'nichuk A.V., Mel'nichuk L.Y., Pasechnik Y.A. Surface plasmon-phonon polaritons of hexagonal zinc oxide. Tech. Phys. 1998. 43. P. 52-55. https://doi.org/10.1134/1.1258935

17. Venger E.V., Melnichuk L.Yu., Melnichuk O.V., Pasichnyk Yu.A. Influence of the plasmon-phonon coupling on the reflectance coefficient in one-axis polar ZnO semiconductor. Ukr. J. Phys. 2000. 45. P. 976-984.

18. Melnichuk O.V., Melnichuk L.Yu., Korsunska N.O., Khomenkova L. Yu., Venger Ye.F. Optical and electrical properties of Tb-ZnO/SiO2 structure in the infrared spectral interval. Ukr. J. Phys. 2019. 64. P. 434-441. https://doi.org/10.15407/ujpe64.5.434

19. Korsunska N., Borkovska L., Khomenkova L. et al. Transformations in the photoluminescent, electrical and structural properties of Tb3+ and Eu3+ co-doped ZnO films under high-temperature. J. Lumin. 2020. 217. P. 116739. https://doi.org/10.1016/j.jlumin.2019.116739

20. Venger Ye.F., Melnichuk O.V., Melnichuk L.Yu., Semikina T.V. IR spectroscopic study of thin ZnO films grown using the atomic layer deposition method. Ukr. J. Phys. 2016. 61. P. 1059-1066.

21. Melnichuk O., Melnichuk L., Venger Ye. et al. Investigation of plasmon-phonon interaction in ZnO films deposited on Si substrates in pure argon and argon-oxygen mixed. Semicond. Sci. Technol. 2020. 35. P. 095034. https://doi.org/10.1088/1361-6641/ab9397

22. Nosenko V., Korsunska N., Vorona I. et al. The mechanism of formation of interface barriers in ZnO:Mn ceramics. SN Appl. Sci. 2020. 2. P. 979. https://doi.org/10.1007/s42452-020-2754-8

23. Spitzer W.G., Kleinman D.A. Infrared lattice bands of quartz. Phys. Rev. 1961. 121. P. 1324-1335. https://doi.org/10.1103/PhysRev.121.1324

24. Vinogradov E.A., Dorofeev I.A. Thermally stimulated electromagnetic fields of solids. Physics-Uspekhi. 2009. 52. P. 425-459. https://doi.org/10.3367/UFNe.0179.200905a.0449

25. Poulet H., Mathieu J.P. Vibrational Spectra and Symmetry of Crystals. Gordon and Breach, New York, London, Paris, 1976.

26. Ronard-Haret J.C. Influence of the sintering temperature on the electrical and luminescence properties of Mn-doped ZnO. Solid State Ionics. 2004. 167. P. 355-366. https://doi.org/10.1016/j.ssi.2004.01.019

27. Boumezoued A., Guergouri K., Zaabat M., Recham D., Barille R. Investigation of structural and electrical properties of manganese doped ZnO varistors prepared from nanopowders. J. Nanosci. Nanotech. Applications. 2018. 2. P. 1-7.

28. Shinde V.R., Gujar T.P., Lokhande C.D., Mane R.S., Han S-H. Mn-doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 2006. 96. P. 326-330. https://doi.org/10.1016/j.matchemphys.2005.07.045