Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 407-412 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.407


References

1. Dasgupta N.P., Sun J., Liu C. et al. 25th anniversary article: Semiconductor nanowires - synthesis, characterization, and applications. Adv. Mater. 2014. 26. P. 2137-2184. https://doi.org/10.1002/adma.201305929

2. Barrigon E., Heurlin M., Bi Z., Monemar B., Samuelson L. Synthesis and application of III-V nanowires. Chem. Rev. 2019. 119. P. 9170-9220. https://doi.org/10.1021/acs.chemrev.9b00075

3. Chen C.-P., Ganguly A., Lu C.-Y. et al. Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. An. Chem. 2011. 83, No 6. P. 1938-1943. https://doi.org/10.1021/ac102489y

4. Yang P., Yan R., Fardy M. Semiconductor nanowire: what's next? NanoLett. 2010. 10. P. 1529-1536. https://doi.org/10.1021/nl100665r

5. Gacevic Z., Lopez-Romero D., Mangas T.J., Calleja E. A top-gate GaN nanowire metal-semiconductor field effect transistor with improved channel electrostatic control. Appl. Phys. Lett. 2016. 108. P. 033101. https://doi.org/10.1063/1.4940197

6. Zhang X., Liu Q., Liu B. et al. Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling. J. Mater. Chem. C. 2017. 5. P. 4319-4325. https://doi.org/10.1039/C7TC00594F

7. Winnerl A., Pereira R.N., and Stutzmann M. Photo-induced changes of the surface band bending in GaN: Influence of growth technique, doping and polarity. J. Appl. Phys. 2017. 121. P. 205307. https://doi.org/10.1063/1.4983846

8. Pfuller C., Brandt O., Grosse F. et al. Unpinning the Fermi level of GaN nanowires by ultraviolet radiation. Phys. Rev. B. 2010. 82. P. 045320. https://doi.org/10.1103/PhysRevB.82.045320

9. Kurakin A.M., Vitusevich S.A., Danylyuk S.V. et al. Mechanism of mobility increase of the two-dimensional electron gas in AlGaN/GaN heterostructures under small dose gamma irradiation. J. Appl. Phys. 2008. 103. P. 083707. https://doi.org/10.1063/1.2903144

10. Kocan M., Rizzi A., Luth H., Keller S., Mishra U.K. Surface potential at as-grown GaN(0001) MBE layers. phys. status solidi (b). 2002. 234. P. 773-777. https://doi.org/10.1002/1521-3951(200212)234:3<773::AID-PSSB773>3.0.CO;2-0

11. Himmerlich M., Lymperakis L., Gutt R. et al. GaN(0001) surface states: Experimental and theore-tical fingerprints to identify surface reconstructions. Phys. Rev. B. 2013. 88. P. 125304. https://doi.org/10.1103/PhysRevB.88.125304

12. Sanford N.A., Robins L.H., Blanchard P.T. et al. Studies of photoconductivity and field effect transistor behavior in examining drift mobility, surface depletion, and transient effects in Si-doped GaN nanowires in vacuum and air. J. Appl. Phys. 2013. 113. P. 174306. https://doi.org/10.1063/1.4802689

13. Gassoumi M., Grimbert B., Gaquiere C., Maaref H. Evidence of surface states for AlGaN/GaN/SiC HEMTs passivated Si3N4 by CDLTS. Semiconductors. 2012. 46. P. 382-385. https://doi.org/10.1134/S1063782612030104

14. Henning A., Klein B., Bertness K.A. et al. Measurement of the electrostatic edge effect in wurtzite GaN nanowires. Appl. Phys. Lett. 2014. 105. P. 213107. https://doi.org/10.1063/1.4902873

15. Sydoruk V.A., Zadorozhnyi I., Hardtdegen H. et al. Electronic edge-state and space-charge phenomena in long GaN nanowires and nanoribbons. Nanotechnology. 2017. 28. P. 135204. https://doi.org/10.1088/1361-6528/aa5de3