Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 413-418 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.413
References
1. Spanoudaki A. and Pelster R. Frequency depen-dence of dielectric anisotropy in ferrofluids. J. Magn. Magn. Mater. 2002. 252. P. 71-73.
https://doi.org/10.1016/S0304-8853(02)00718-7
2. Cotae C. Dielectric anisotropy in ferrofluids. J. Magn. Magn. Mater. 1983. 39. P. 85-87.
https://doi.org/10.1016/0304-8853(83)90405-5
3. Rajnak M., Kurimsky J., Dolnik B. et al. Dielectric response of transformer oil based ferrofluid in low frequency range. J. Appl. Phys. 2013. 114. P. 034313.
https://doi.org/10.1063/1.4816012
4. Malaescu L. and Marin C.N. Dielectric behavior of some ferrofluids in low-frequency fields. J. Colloid Interface Sci. 2002. 251, Issue 1. P. 73-77.
https://doi.org/10.1006/jcis.2002.8342
5. Rajnak M., Kurimsky J., Dolnik B. et al. Dielectric-spectroscopy approach to ferrofluid nanoparticles clustering induced by an external electric field. Phys. Rev. E. 2014. 90. P. 032310.
https://doi.org/10.1103/PhysRevE.90.032310
6. Hwang J.G., Zahn M., O'Sullivan F.M. et al. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids. J. Appl. Phys. 2010. 107. P. 014310.
https://doi.org/10.1063/1.3267474
7. Rajnak M., Petrenko V.I., Avdeev M.V. et al. Direct observation of electric field induced pattern formation and particle aggregation, in ferrofluids. Appl. Phys. Lett. 2015. 107. P. 073108.
https://doi.org/10.1063/1.4929342
8. Heathcote M. The J&P Transformer Book. A Practical Technology of the Power Transformer. 13th Edition. Elsevier, 2007.
https://doi.org/10.1016/B978-075068164-3/50003-X
9. Kurimsky J., Rajnak M., Cimbala R. et al. Effect of magnetic nanoparticles on partial discharges in trans-former oil. J. Magn. Magn. Mater. 2020. 496. P. 165923.
https://doi.org/10.1016/j.jmmm.2019.165923
10. Kovalchuk O.V., Nesterenko O.B., Kotovskyi V.Yo. et al. Influence of magnetic nanoparticles on dielectric properties of Shell oil transformer oil. SPQEO. 2021. 24, No 2. P. 154-159.
https://doi.org/10.15407/spqeo24.02.154
11. Studenyak I.P., Kovalchuk O.V., Poberezhets S.I., et al. Influence of anion substitution on electrical conductivity of composites based on liquid crystal with Cu6PS5X (X= I, Br) nanoparticles. SPQEO. 2019. 22, No 4. P. 387-390.
https://doi.org/10.15407/spqeo22.04.387
12. Tomylko S., Yaroshchuk O., Kovalchuk O., Mashke U. Dielectric properties of nematic liquid crystal modified with diamond nanoparticles. Ukr. J. Phys. 2012. 57, No 2. P. 239-243.
13. Twarowski A.J., Albrecht A.C. Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70. P. 2255-2261.
https://doi.org/10.1063/1.437729
14. Koval'chuk A. V. Generation of charge carriers and formation of antisymmetric double electric layers in glycerine. J. Chem. Phys. 1998. 108. P. 8190-8194.
https://doi.org/10.1063/1.476174
15. Adamchevskiy I. Electrical Conductivity of Liquid Dielectrics. Publ. House "Energiia", Leningrad. Department, 1972 (in Russian).
16. Martinez-Vega J. Dielectric Materials for Electrical Engineering. John Wiley & Sons, Inc., 2010.
| |
|
|