Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 425-430 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.425


References

1. Golovynskyi S., Golovynska I., Stepanova L. et al. Optical windows for head tissues in near and short-wave infrared regions: approaching transcranial light applications. J. Biophoton. 2018. 11, No 12. P.e201800141. https://doi.org/10.1002/jbio.201800141

2. Alloatti L. Closed-loop silicon germanium photo-detector apparatus and other semiconductor devices including curved-shape silicone germanium structures. Patent US 2017/0040487 A1, publ. 09.02.2017.

3. Baer-Jones T.W., Zhang Y., Hochberg M.J., Novak A. Germanium metal-contact-free near-IR photo-detector. Patent US 2017/0104116 A1, publ. 13.04.2017.

4. Dong Y., Wang W., Lei D. et al. Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique. Opt. Exp. 2015. 23, No 14. P. 18611-18619. https://doi.org/10.1364/OE.23.018611

5. Buzynin A.N., Buzynin Yu.N., Panov V.A. Applications of fianite in electronics. Advances in OptoElectronics. 2012. Article ID 907560. 23 p. https://doi.org/10.1155/2012/907560

6. Venkatachalam S., Nanjo H., Kawasaki K. et al. Opto-electronic properties of ZnSe, ITO, TiO2 and ZnO thin films. Ch. 6, in: Optoelectronics - Materials and Techniques. Ed. P. Predeer. 2011. P. 165-184. https://doi.org/10.5772/18418

7. Fedorenko A., Vorona I., Maslov V. Investigation of Ge p-i-n photodetector as a part of pulsed laser rangefinder prototype. SPQEO. 2021. 24, No 1. P. 100-104. https://doi.org/10.15407/spqeo24.01.100

8. Williams J.S., Poate J.M. Ion Implantation and Beam Processing. Academic Press. 2014.

9. Braunovich M., Konchits V., Myshkin N. Electrical Contacts. Fundamentals, Applications and Technology. CRC Press. Boca Raton.

10. Drobny J.G. Polymers for Electricity and Electronics: Materials, Properties, and Applications. John Wiley & Sons, Inc, 2012. https://doi.org/10.1002/9781118160121

11. Shenogin S., Ferguson L., Roy A. The effect of contact resistance on electrical conductivity in filled elastomer materials. Polymer. 2020. 198. P. 122502. https://doi.org/10.1016/j.polymer.2020.122502

12. Rogers J.A., Someya T., Huang Y. Materials and mechanics for stretchable electronics. Science. 2010. 327. P. 1603-1607. https://doi.org/10.1126/science.1182383

13. Molina A., Gonzalez J. Pulse Voltammetry in Physical Electrochemistry and Electroanalysis: Theory and Applications. Springer, 2016. https://doi.org/10.1007/978-3-319-21251-7

14. Saotome H., Oi S., and Kaneko H. Development of contactless measuring instrument for sheet resis-tance by means of pulse voltage excitation. IEEJ Trans. Sens. Micromachines. 2013. 133, No 2. P. 52-53. https://doi.org/10.1541/ieejsmas.133.52

15. Deen M.J., Pascal F. Electrical Characterization of Semiconductor Materials and Devices. In: Kasap S., Capper P. (eds). Springer Handbook of Electronic and Photonic Materials. Springer, Cham. 2017. https://doi.org/10.1007/978-3-319-48933-9_20

16. Yim W.M. Solid solutions in the pseudobinary (III-V) - (II-VI) systems and their optical energy gaps. J. Appl. Phys. 1969. 40. P. 2617-2623. https://doi.org/10.1063/1.1658043

17. Sayers D.E., Lytle F.W., Stern E.A. Structure determination of amorphous Ge, GeO2 and GeSe by Fourier analysis of extended X-ray absorption fine structure (EXAFS). Journal of Non-Crystalline Solids. 1972. 8-10. P. 401-407. https://doi.org/10.1016/0022-3093(72)90167-6

18. Grande T., Ishii M., Akaishi M. et al. Structural properties of GeSe2 at high pressures. J. Solid State Chem. 1999. 145, No 1. P. 167-173. https://doi.org/10.1006/jssc.1999.8235