Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 431-435 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.431


References

1. Alqahtani R.T., Babatin M.M. & Biswas A. Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle. Optik. 2018. 154. P. 109-114. https://doi.org/10.1016/j.ijleo.2017.09.112

2. Biswas A., Edoki J., Guggilla P. et al. Cubic-quartic optical soliton perturbation with Lakshmanan-Por-sezian-Daniel model by semi-inverse variational prin-ciple. Ukr. J. Phys. Opt. 2021. 22, No 3. P. 123-127. https://doi.org/10.3116/16091833/22/3/123/2021

3. He J.H., Sun C. A variational principle for a thin film equation. J. Math. Chem. 2019. 57. P. 2075-2081. https://doi.org/10.1007/s10910-019-01063-8

4. He J.H. Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation. Results in Physics. 2020. 17. P. 103031. https://doi.org/10.1016/j.rinp.2020.103031

5. Kheir H., Jabbari A., Yildirim A., Alomari A.K. He's semi-inverse method for soliton solutions of Boussinesq system. World Journal of Modelling and Simulation. 2013. 9, No 1. P. 3-13.

6. Li X.W., Li Y., He J.H. On the semi-inverse method and variational principle. Thermal Science. 2013. 17, Issue 5. P. 1565-1568. https://doi.org/10.2298/TSCI1305565L

7. Li H.M. The variational principle for Yang-Mills equation by semi-inverse method. Facta Universitatis, Series: Mechanics, Automatic Control and Robotics. 2004. 4, No 16. P. 169-171.

8. Liu W.Y., Yu Y.J., Chen L.D. Variational principles for Ginzburg-Landau equation by He's semi-inverse method. Chaos Solitons & Fractals. 2007. 33, Issue 5. P. 1801-1803. https://doi.org/10.1016/j.chaos.2006.03.019

9. Ozis T., Yildirim A. Application of He's semi-inverse method to the nonlinear Schrodinger equation. Computers and Mathematics with Applications. 2007. 54. P. 1039-1042. https://doi.org/10.1016/j.camwa.2006.12.047

10. Singh S.S. Bright and dark 1-soliton solutions to perturbed Schrodinger-Hirota equation with power law nonlinearity via semi-inverse variation method and ansatz method. Int. J. Phys. Res. 2017. 5, Issue 2. P. 39-42. https://doi.org/10.14419/ijpr.v5i2.7795

11. Zayed E.M.E., Alngar M.E.M., Biswas A., Yildirim Y., Khan S., Alzahrani A.K., Belic M.R. Cubic-quartic optical soliton perturbation in polarization-preserving fibers with Fokas-Lenells equation. Optik. 2021. 234. P. 166543. https://doi.org/10.1016/j.ijleo.2021.166543

12. Zhang J., Yu J.Y., Pan N. Variational principles for nonlinear fiber optics. Chaos Solitons & Fractals. 2005. 24. P. 309-311. https://doi.org/10.1016/S0960-0779(04)00577-6

13. Kudryashov N.A. A generalized model for description of propagation pulses in optical fiber. Optik. 2019. 189. P. 42-52. https://doi.org/10.1016/j.ijleo.2019.05.069

14. Kudryashov N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik. 2020. 212. P. 164750. https://doi.org/10.1016/j.ijleo.2020.164750

15. Kudryashov N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrodinger equation. Optik. 2020. 206. P. 164335. https://doi.org/10.1016/j.ijleo.2020.164335

16. Kudryashov N.A. Highly dispersive optical solitons of an equation with arbitrary refractive index. Regular and Chaotic Dynamics. 2020. 25, No 6. P. 537-543. https://doi.org/10.1134/S1560354720060039

17. Kudryashov N.A. & Antonova E.V. Solitary waves of equation for propagation pulse with power nonlinearities. Optik. 2020. 217. P. 164881. https://doi.org/10.1016/j.ijleo.2020.164881

18. Serkin V.N., Belyaeva T. Optimal control for soliton breathers of the Lakshmanan-Porsezian-Daniel, Hirota, and cmKdV models. Optik. 2018. 175. P. 17-27. https://doi.org/10.1016/j.ijleo.2018.08.140

19. Yildirim Y., Biswas A., Kara A.H., Ekici M., Khan S. & Belic M.R. Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized non-local nonlinearity. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2021. 24, No 1. P. 64-70. https://doi.org/10.1016/j.ijleo.2021.166966

20. Yildirim Y., Biswas A., Khan S., Belic M.R. Embedded solitons with ?(2) and ?(3) nonlinear susceptibilities. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2021. 24, No 2. P. 160-165. https://doi.org/10.15407/spqeo24.02.160