Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 436-443 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.436


References

1. Wood R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 1902. 4, No 21. P. 396-402. https://doi.org/10.1080/14786440209462857

2. Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am. 1941. 31, No 3. P. 213-222. https://doi.org/10.1364/JOSA.31.000213

3. Zhang J., Zhang L. and Xu W. Surface plasmon polaritons: physics and applications. J. Phys. D: Appl. Phys. 2012. 45. P. 113001. https://doi.org/10.1088/0022-3727/45/11/113001

4. Toma K., Vala M., Adam P. et al. Compact surface plasmon-enhanced fluorescence biochip. Opt. Exp. 2013. 21, No 8. P. 10121-10132. https://doi.org/10.1364/OE.21.010121

5. Valsecchi C. and Brolo A.G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir. 2013. 29, No 19. P. 5638-5649. https://doi.org/10.1021/la400085r

6. Ding S.Y., Yi J., Li J.F. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016. 1. P. 16021. https://doi.org/10.1038/natrevmats.2016.21

7. Zijlstra P., Chon J.W.M. and Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature. 2009. 459. P. 410-413. https://doi.org/10.1038/nature08053

8. Atwater H.A. and Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010. 9. P. 205-213. https://doi.org/10.1038/nmat2629

9. Kristensen A., Yang J., Bozhevolnyi S. et al. Plasmonic colour generation. Nat. Rev. Mater. 2017. 2. P. 16088. https://doi.org/10.1038/natrevmats.2016.88

10. Trunov M.L., Lytvyn P.M., Nagy P.M. et al. Light-induced mass transport in amorphous chalcogenides: Toward surface plasmon-assisted nanolithography and near-field nanoimaging. phys. status solidi b. 2014. 251, No 7. P.1354-1362. https://doi.org/10.1002/pssb.201350296

11. Csarnovics I., Veres M., Nemec P. et al. Surface plasmon enhanced light-induced changes in Ge-Se amorphous chalcogenide - gold nanostructures. J. Non-Cryst. Solids X. 2020. 6. P. 100045. https://doi.org/10.1016/j.nocx.2020.100045

12. Stafe M., Popescu A.A., Savastru D. et al. Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation. J. Phys. D.: Appl. Phys. 2018. 51. P. 125106. https://doi.org/10.1088/1361-6463/aaa9cf

13. Indutnyi I.Z., Mynko V.I., Sopinskyy N.V. and Lytvyn P.M. Plasmon-stimulated photodoping in the thin-layer As2S3-Ag structure. Opt. Spectrosc. 2019. 127. P. 938-942. https://doi.org/10.1134/S0030400X19110109

14. Indutnyi I., Mynko V., Sopinskyy M. and Lytvyn P. Impact of surface plasmon polaritons on silver photodiffusion into As2S3 film. Plasmonics. 2021. 16, No 1. P. 181-188. https://doi.org/10.1007/s11468-020-01275-8

15. Kolobov A.V. and Elliott S.R. Photodoping of amorphous chalcogenides by metals. Adv. Phys. 1991. 40. P. 625-684. https://doi.org/10.1080/00018739100101532

16. Indutnyi I.Z., Dan'ko V.A., Kudryavtsev A.A. et al. Photodoping in As2S3-Ag structures J. Non-Cryst. Solids. 1995. 185, No 1-2. P. 176-182. https://doi.org/10.1016/0022-3093(94)00660-1

17. Sakaguchi Y., Hanashima T., Aoki H. et al. Kinetics of silver photodiffusion into amorphous Ge20S80 films: case of pre-reaction. phys. status solidi a. 2018. 215, No 12. P. 1800049. https://doi.org/10.1002/pssa.201800049

18. Khan P., Xu Y., Leon W. et al. Kinetics of photo-dissolution within Ag/As2S3 heterostructure. J. Non-Cryst. Solids. 2018. 500. P. 468-474. https://doi.org/10.1016/j.jnoncrysol.2018.09.001

19. Stronski A.V. Production of metallic patterns with the help of high resolution inorganic resists. In: Harman G., Mach P. (Eds). Microelectronic Intercon-nections and Assembly NATO ASI Series, 3: High Technology, 54. Springer, Dordrecht, 1998. P. 263-293. https://doi.org/10.1007/978-94-011-5135-1_31

20. Indutnyi I.Z., Stronski A.V., Kostioukevich S.A. et al. Holographic optical element fabrication using chalcogenide layers. Opt. Eng. 1995. 34, No 4. P. 1030-1039. https://doi.org/10.1117/12.197144

21. Kozicki M.N. and Barnaby H.J. Conductive bridging random access memory - materials, devices and applications. Semicond. Sci. Technol. 2016. 31. P. 113001. https://doi.org/10.1088/0268-1242/31/11/113001

22. Dan'ko V., Dmitruk M., Indutnyi I. et al. Fabri-cation of periodic plasmonic structures using interference lithography and chalcogenide photo-resist. Nanoscale Res. Lett. 2015. 10. Pap. 497. https://doi.org/10.1186/s11671-015-1203-x

23. Hibbins A.P., Sambles J.R., Lawrence C.R. Azi-muth-angle-dependent reflectivity data from metal-lic gratings. J. Mod. Opt. 1998. 45, No 5. P. 1019-1028. https://doi.org/10.1080/09500349808230894

24. Johnson P.B. and Christy R.W. Optical constants of the noble metals. Phys. Rev. B. 1972. 6. P. 4370-4379. https://doi.org/10.1103/PhysRevB.6.4370

25. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988. https://doi.org/10.1007/BFb0048317

26. Onari S., Inokuma T., Kataura H. and Arai T. Ab-sorption edge of the amorphous (GeS2)x(As2S3)1-x system under hydrostatic pressure. Phys. Rev. B. 1987. 35, No 9. P. 4373-4379. https://doi.org/10.1103/PhysRevB.35.4373

27. Abdel-Wahab F., Ashraf I.M. and Ahmed F.B. Optical parameters of both As2S3 and As2Se3 thin films from ultraviolet to the near-infrared via variable-angle spectroscopic ellipsometer. Semiconductors. 2020. 54, No 11. P. 1430-1438. https://doi.org/10.1134/S1063782620110020

28. Sakaguchi Y., Asaoka H., Uozumi Y. et al. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate. J. Appl. Phys. 2016. 120. 055103. https://doi.org/10.1063/1.4959207

29. Janai M. Photodissolution of silver in amorphous As2S3 films. Phys. Rev. Lett. 1981. 47. P. 726-729. https://doi.org/10.1103/PhysRevLett.47.726