Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 444-449 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.444


References

1. Ma H., Yao K., Dou S. et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energy Mater. Sol. Cells. 2020. 212. P. 110584-1-110584-7. https://doi.org/10.1016/j.solmat.2020.110584

2. Vasiljevic D., Pavlovic D., Lazovic V. et al. Thermal radiation management by natural photonic structures: Morimus asper funereus case. J. Therm. Biol. 2021. 98. P. 102932-1-102932-10. https://doi.org/10.1016/j.jtherbio.2021.102932

3. Xu C., Qu S., Pang Y. et al. Metamaterial absorber for frequency selective thermal radiation. Infrared Phys. Technol. 2018. 88. P. 133-138. https://doi.org/10.1016/j.infrared.2017.08.017

4. Li W., Fan S. Nanophotonic control of thermal radiation for energy applications. Opt. Exp. 2018. 26. P. 15995-16021. https://doi.org/10.1364/OE.26.015995

5. Fan S. Thermal photonics and energy applications. Joule. 2017. 1, No 2. P. 264-273. https://doi.org/10.1016/j.joule.2017.07.012

6. Liu J.J., Guler U., Lagutchev A. et al. Quasi-coherent thermal emitter based on refractory plasmonic materials. Opt. Mater. Exp. 2015. 5, No 12. P. 2721-2728. https://doi.org/10.1364/OME.5.002721

7. Zhang Z.M., Wang L.P. Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials. Int. J. Thermophys. 2013. 34. P. 2209-2242. https://doi.org/10.1007/s10765-011-1036-5

8. Wang L.P., Basu S. and Zhang Z.M. Direct measurement of thermal emission from a Fabry-Perot cavity resonator. J. Heat Transfer. 2012. 134. P. 072701-1-072701-9. https://doi.org/10.1115/1.4006088

9. Zhang W., Lv D. Preparation and characterization of Ge/TiO2 one-dimensional photonic crystal with low infrared-emissivity in the 8-14 ?m band. Mater. Res. Bull. 2020. 124. P. 110747-1-110747-4. https://doi.org/10.1016/j.materresbull.2019.110747

10. Xu C., Wang B., Yan M. et al. An optically transparent sandwich structure for radar-infrared bistealth. Infrared Phys. Technol. 2020. 105. P. 103108-1-103108-11. https://doi.org/10.1016/j.infrared.2019.103108

11. Chen X., Tian Ch., Chen T. Composite grating structure for laser and infrared compatible stealth with high visible transmittance. Optik. 2019. 183. P. 863-868. https://doi.org/10.1016/j.ijleo.2019.03.007

12. Liu B., Shi J.-M., Zhang J.K. et al. Infrared stealth performance analysis of photonic crystal with high heat dissipation. Opt. Mater. 2021. 111. P. 110689-1-110689-5. https://doi.org/10.1016/j.optmat.2020.110689

13. Zhang J.-K., Shi J.-M., Zhao D.-P. et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals. Infrared Phys. Technol. 2017. 85. P. 62-65. https://doi.org/10.1016/j.infrared.2017.05.018

14. Morozhenko V.O., Maslov V.P., Bariakhtar I.V., Kachur N.V. Determination of the parameters of coherent magneto-optical layers on a finite absorbing substrate from thermal radiation spectra. SPQEO. 2020. 23. P. 400-407. https://doi.org/10.15407/spqeo23.04.400

15. Furman Sh.A., Tikhonravov A.V. Basics of Optics of Multilayer Systems. Edition Frontiers, Gif-sur-Yvette, 1992.

16. Kaiser W., Collins R.J., and Fan H.Y. Infrared absorption in p-type germanium. Phys. Rev. 1953. 91. P. 1380-1381. https://doi.org/10.1103/PhysRev.91.1380

17. Spitzer W.G. and Whelan J.M. Infrared absorption and electron effective mass in n-type gallium arsenide. Phys. Rev. 1959. 114. P. 59-63. https://doi.org/10.1103/PhysRev.114.59

18. Shaabana E.R., Yahiab I.S., El-Metwally E.G. Validity of Swanepoel's method for calculating the optical constants of thick films. Acta Phys. Pol. A. 2012. 121. P. 628-635. https://doi.org/10.12693/APhysPolA.121.628

19. Leveque G. and Villachon-Renard Y. Determination of optical constants of thin ?lm from re?ectance spectra. Appl. Opt. 1990. 29. P. 3207-3212. https://doi.org/10.1364/AO.29.003207