Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 457-465 (2021).


1. Manual, A. U. S. Device Simulation Software version 5.19. 17. C (Silvaco International, Santa Clara, CA, USA), 2013.

2. Bouloufa A., Djessas K., and Zegadi A. Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D. Thin Solid Films. 2007. 515. P. 6285-6287.

3. Mezghache M., Hadjoudja B. Improved perfor-mance in bilayer-CIGS solar cell. International Renewable and Sustainable Energy Conference (IRSEC). 2013. P. 82-85.

4. Gloeckler M., Fahrenbruch A.L. and Sites J.R. Numerical modeling of CIGS and CdTe solar cells: setting the baseline. 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proc. 2003. 1. P. 491-494.

5. Song S.H., Nagaich K., Aydil E.S. et al. Structure optimization for a high efficiency CIGS solar cell. 35th IEEE Photovoltaic Specialists Conference. 2010. P. 2488-2492.

6. Richter M., Schubbert C., Eraerds P. et al. Optical characterization and modeling of Cu (In, Ga)(Se, S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation. Thin Solid Films. 2013. 535. P. 331-335.

7. Jackson P., Hariskos D., Lotter E. et al. New world record efficiency for Cu (In, Ga) Se2 thin film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications. 2011. 19. P. 894-897.

8. Chelvanathan P., Hossain M.I., Amin N. Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS. Current Applied Physics. 2010. 10. P. S387-S391.

9. Amin N., Chelvanathan P., Hossain M.I., Sopian K. Numerical modelling of ultra thin Cu(In,Ga)Se2 solar cells. Energy Procedia. 2012. 15. P. 291-298.

10. Song J., Anderson T.J., Li S.S. Material parameter sensitivity study on CIGS solar cell performance. 33rd IEEE Photovoltaic Specialists Conf. 2008. P. 1-4.

11. Movla H. Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis. Optik. 2014. 125. P. 67-70.

12. Hultqvist A., Li J.V., Kuciauskas D. et al. Reducing interface recombination for Cu(In,Ga)Se2 by atomic layer deposited buffer layers. Appl. Phys. Lett. 2015. 107. P. 033906.

13. Hegedus S.S., Luque A. Status, Trends, Challenges and the Bright Future of Solar Electricity from Photovoltaics. Handbook of Photovoltaic Science and Engineering. 2003. P. 1-43.

14. Hanna G., Jasenek A., Rau U., Schock H.W. Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. Thin Solid Films. 2001. 387. P. 71-73.

15. Contreras M.A., Mansfield L.M., Egaas B. et al. Wide bandgap Cu(In, Ga) Se2 solar cells with improved energy conversion efficiency. Progress in Photovoltaics: Research and Applications. 2012. 20. P. 843-850.

16. Contreras M.A., Ramanathan K., AbuShama J. et al. Accelerated publication: Diode characteristics in state of the art ZnO/CdS/Cu(In1?xGax)Se2 solar cells. Progress in Photovoltaics: Research and Applications. 2005. 13. P. 209-216.

17. Ishizuka S., Sakurai K., Yamada A. et al. Fabrication of wide-gap Cu (In1?xGax) Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Solar Energy Materials and Solar Cells. 2005. 87. P. 541-548.

18. Nishimura T., Hamada N., Chantana J. et al. Appli-cation of two-dimensional MoSe2 atomic layers to the lift-off process for producing light-weight and flexible bifacial Cu(In,Ga)Se2 solar cells. ACS Applied Energy Materials. 2020. 3. P. 9504-9508.

19. Elbar M., Tobbeche S., Merazga A. Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. Solar Energy. 2015. 122. P. 104-112.

20. Elbar M., Tobbeche S. Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software. Energy Procedia. 2015. 74. P. 1220-1227.

21. Yamamoto Y., Saito K., Takahashi K., Konagai M. Preparation of boron-doped ZnO thin films by photo-atomic layer deposition. Solar Energy Materials and Solar Cells. 2001. 65. P. 125-132.