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1. Introduction 

One of the modern trends to address soliton dynamics is 

the implementation of cubic-quartic (CQ) dispersion 

profile that replaces the traditional chromatic dispersion 

(CD), when it runs low. There are various other aspects 

that circumvents this crisis. A few of them replacing the 

governing nonlinear Schrödinger’s equation by 

Schrödinger–Hirota equation, introduction to Bragg 

gratings, work with pure quartic solitons or pure cubic 

solitons and so on [1–20]. This paper implements one of 

the latest ways to address the low count on CD, namely: 

as introduced, CQ solitons by virtue of another model 

that was recently introduced in the literature. This is 

Fokas–Lenells equation (FLE), which will be studied 

with CQ dispersion profile and will be referred to as CQ-

FLE. It must be noted that some preliminary results with 

CQ-FLE have been reported [11]. Technology of 

adopting CQ dispersion profile to replace the low count 

of CD is not new. In fact, another model from quantum 

optics, namely Lakshmanan–Porsezian–Daniel model 

with CQ dispersion profile, has been lately studied [1, 2]. 

Today’s paper will address the perturbed version of 

CQ-FLE, where the perturbation terms are of 

Hamiltonian type and are studied with maximally 

permissible intensity that is also known as full 

nonlinearity. These perturbations are with self-steepening 

nonlinearity as well as nonlinear dispersion. Thus, the 

perturbed CQ-FLE will be studied by the application of 

semi-inverse variational principle (SVP) that will retrieve 

a single bright soliton solution in presence of an arbitrary 

full nonlinearity parameter [1–10, 12]. It must be noted 

that there exists a wide range of integration schemes that 

can retrieve soliton solutions to models with Hamiltonian 

perturbations, such as inverse scattering transform or 

Hirota’s bilinear structure, but all of these approaches 

fail, when an arbitrary power law nonlinearity parameter 

is present. It is only SVP that comes to the rescue in such 

a situation. The bright soliton solution retrieved in this 

manner is, however, not an exact solution, although it is 

analytical, since it is based on SVP that will be 

introduced in the paper. The details are enumerated and 

exhibited in the rest of the paper. 
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1.1. Governing model 

The unperturbed version of CQ-FLE is given as: 

 
2

0t xxx xxxx xiq iaq bq q cq idq     .  (1) 

In (1), the dependent variable q(x,t) is the complex-

valued wave function that represents the soliton profile. 

The independent variables x and t represent spatial and 

temporal variables, respectively. The first term is the 

linear temporal evolution where 1i . The 

coefficients of a and b are 3OD and 4OD, respectively. 

The coefficient c is Kerr law of nonlinearity, while the 

coefficient d is nonlinear dispersion that compensates for 

low count of CD as introduced by Fokas and Lenells. 

Thus, the current model additionally introduced 3OD and 

4OD terms that together with nonlinear dispersion 

collectively balance with SPM, due to Kerr law for 

solitons to sustain. This model has been recently studied, 

and its full soliton solutions spectrum has been recovered 

and reported [11]. The bright single-soliton solution to 

(1) is identified as: 

      02hsec,



txi

evtxBAtxq ,  (2) 

where A is the soliton amplitude and B – inverse width 

with v being its velocity. From the phase component, κ is 

the soliton frequency, while ω – soliton wave number, 

and finally θ0 – phase constant. 

When perturbation terms are turned on, the 

corresponding perturbed CQ-FLE is given by: 
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  (3) 

The coefficients of λ, μ and θ stem from self-steepening 

effects and nonlinear dispersions, respectively. The 

parameter m represents the full nonlinearity effect that is 

otherwise referred to as maximum intensity as permitted 

by the model experimentally. 

2. Mathematical preliminaries 

To obtain a bright single-soliton solution to the perturbed 

CQ-FLE with nonlinear perturbation terms, we 

decompose 

     txiesgtxq ,,  ,    (4) 

where 

vtxs   and   0,  txtx ,  (5) 

with  tx,  being the phase component of soliton. 

After inserting (4) and (5) into (3) and breaking into 

real and imaginary components, it leads to a pair of 

relations. The imaginary component is as follows: 
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Upon setting the coefficients of linearly 

independent functions to zero, one recovers the 

parameter constraints as  

 ba 4       (7) 

and 

  0212  mmd ,   (8) 

while the velocity of soliton comes out as 

32 43  bav .    (9) 

The real part shapes up as 
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Multiplying (10) by g′ and integrating once leads to 
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where K is the integration constant. 

3. Application of SVP 

From (11), the stationary integral is constructed as 
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SVP states that the bright single-soliton solution to the 

perturbed CQ-FLE, given by (3), would be the same as 

that of its unperturbed version (2) [1–10]. However, the 

amplitude and inverse width of the perturbed soliton 

would vary according to [1–10]: 

0
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0
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.      (14) 

Therefore, substituting the unperturbed single-

soliton solution (2) into (12) reduces the stationary 

integral to 
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where 
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Therefore, the equations (13) and (14) are reduced 

to 
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respectively. Upon uncoupling (17) and (18) leads to the 

quartic equation for the soliton width B as 

024  RQBPB ,    (19) 

where 

bP 320 ,     (20) 

  baQ 2840 ,    (21) 

and 

   GAmdсAR m  22 21012 .  (22) 

This solves (19) to 
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Hence, finally, the bright single-soliton solution to 

(3) is still given by (2), where the amplitude-width 

relation is dictated by (23), while the velocity of 

perturbed soliton is indicated by (9). This bright soliton 

solution can be implemented in telecommunications 

technology for soliton transmission across 

intercontinental distances. It must be noted that the 

perturbed FLE does not permit exact single-soliton 

solution by the aid of any known algorithm unless a 

specific value of the full nonlinearity parameter is 

selected. However, it is SVP can circumvent this problem 

although this analytical bright single-soliton solution is 

not exact. 

4. Conclusions 

This paper retrieved a bright single-soliton solution to the 

perturbed CQ-FLE, where CD is replaced by 3OD and 

4OD. This analytical soliton solution is not exact, since 

the solution is retrieved as based on SVP. This method is 

thus a savior in the sense that an analytical soliton 

solutions when the full nonlinearity parameter is just 

arbitrary. However, this approach also has its own 

limitations. For example, it fails to retrieve dark or 

singular soliton solutions to the model when the 

perturbation terms carry an arbitrary power–law 

parameter. The stationary integral is rendered to be 

divergent for such cases. Nevertheless, this method 

seems to be promising for implementation of other forms 

of bright solitons such as cosh-Gaussian pulses and 

others. These results will be revealed in future works. 

Additional models, namely, those with several forms of 

Kudryashov’s law of refractive index, will be worked 

upon and those results will also appear with time  

[13–20]. 
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Кубічно-квартичне оптичне збурення солітона зa рівнянням Фокаса–Ленеллса напівоберненою 

варіацією 

A. Biswas, A. Dakova, S. Khan, M. Ekici, L. Moraru, M.R. Belic 

Анотація. У цій роботі описано кубічно-квартичні яскраві оптичні солітони збуреним рівнянням Фокаса–

Ленеллса. Члени Гамільтонових збурень з’являються з максимально припустимою інтенсивністю. Для 

отримання формули для таких солітонів використовується напівобернений варіаційний принцип. 
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