Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 355-361 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.355


References

1. Li F., Roccaforte F., Greco G. et al. Status and prospects of cubic silicon carbide power electronics device technology. Materials (Basel). 2021. 14. P. 5831. https://doi.org/10.3390/ma14195831.

2. Matsunami H. Fundamental research on semi-conductor SiC and its applications to power electronics. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 2020. 96. P. 235–254. https://doi.org/10.2183/pjab.96.018.

3. Le H.T., Haque R.I., Ouyang Z. et al. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies. Microsyst. Nanoeng. 2021. 7. P. 59. https://doi.org/10.1038/s41378-021-00275-w.

4. Papanasam E., Prashanth Kumar B., Chanthini B. et al. A comprehensive review of recent progress, prospect and challenges of silicon carbide and its applications. Silicon. 2022. https://doi.org/10.1007/s12633-022-01998-9.

5. Rashid M., Horrocks B.R., Healy N. et al. Optical properties of mesoporous 4H-SiC prepared by anodic electrochemical etching. J. Appl. Phys. 2016. 120. P. 194303. https://doi.org/10.1063/1.4968172.

6. Lu W., Ou Y., Petersen P.M. et al. Fabrication and surface passivation of porous 6H-SiC by atomic layer deposited films. Opt. Soc. Amer. 2016. 6. P. 1956–1963. https://doi.org/10.1364/OME.6.001956.

7. Monaico E., Tiginyanu I. and Ursaki V. Porous semiconductor compounds. Semicond. Sci. Technol. 2020. 35. P. 103001. https://doi.org/10.1088/1361-6641/ab9477.

8. Naderi N., Hashim M.R. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates. Mater. Res. Bull. 2013. 48. P. 2406–2408. https://doi.org/10.1016/j.materresbull.2013.02.078.

9. Nagasawa F., Takamura M., Sekiguchi H. et al. Prominent luminescence of silicon-vacancy defects created in bulk silicon carbide p-n junction diodes. Sci. Rep. 2021. 11. P. 1497. https://doi.org/10.1038/s41598-021-81116-8.

10. Ou H., Ou Y., Argyraki A. et al. Advances in wide bandgap SiC for optoelectronics. Eur. Phys. J. B: Condensed Matter Physics. 2014. 87. P. 58. https://doi.org/10.1140/epjb/e2014-41100-0.

11. Zhang F. SiC: An excellent platform for single-photon detection and emission. Sci. China Phys. Mech. Astron. 2022. 65. P. 107331. https://doi.org/10.1007/s11433-022-1941-5. 12. Naderi N., Moghaddam M. Ultra-sensitive UV sen-sors based on porous silicon carbide thin films on silicon substrate. Ceramics Int. 2020. 46. P. 13821–13826. https://doi.org/10.1016/j.ceramint.2020.02.173.

13. Anwar M.S., Bukhari S.Z.A., Ha J.-H. et al. Controlling the electrical resistivity of porous silicon carbide ceramics and their applications: A review. Appl. Ceram. Technol. 2022. 19. P. 1814–1840. https://doi.org/10.1111/ijac.14034.

14. Raju P., Li Q. Review – Semiconductor materials and devices for gas sensors. J. Electrochem. Soc. 2022. 169. P. 057518. https://iopscience.iop.org/ article/10.1149/1945-7111/ac6e0a/pdf.

15. Kim K.S., Chung G.S., Al-Ghamdi A.A., Yakupha-noglu F. Hydrogen sensing characteristics of vertical type hydrogen sensors based on porous 3C-SiC with catalyst materials. Microsyst. Technol. 2013. 19. P. 1221. https://doi.org/10.1007/s00542-012-1722-7.

16. Bacherikov Yu.Yu., Konakova R.V., Kocherov A.N. et al. Effect of microwave annealing on silicon dioxide/silicon carbide structures. Tech. Phys. 2003. 48. P. 598–601. https://doi.org/10.1134/1.1576474.

17. Bacherikov Yu.Yu., Konakova R.V., Milenin V.V. et al. Changes in characteristics of gadolinium, titanium, and erbium oxide films on the SiC surface under microwave treatment. Semiconductors. 2008. 42. P. 868–872. https://doi.org/10.1134/S1063782608070191.

18. Okhrimenko O.B. Phenomenological model of athermal interaction of microwave radiation with the structures wide-gap semiconductor – oxide film. SPQEO. 2015. 18. No 4. P. 452–455. https://doi.org/10.15407/spqeo18.04.452.

19. Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B. et al. Optical properties of thin erbium oxide films formed by rapid thermal annealing on SiC substrates with different structures. SPQEO. 2017. 20, No 4. P. 465–469. https://doi.org/10.15407/spqeo20.04.465.

20. Konstantinov A.O., Henry A., Harris C.I. et al. Photoluminescence studies of porous silicon carbide. Appl. Phys. Lett. 1995. 66. P. 2250–2252. https://doi.org/10.1063/1.113182.

21. Berezovska N.I., Bacherikov Yu.Yu., Konakova R.V. et al. Characterization of porous silicon carbide according to absorption and photo-luminescence spectra. Semiconductors. 2014. 48. P. 1028–1030. https://doi.org/10.1134/S1063782614080041.

22. Fan J.Y., Wu X.L., Paul K. Chu. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 2006. 51. P. 983. https://doi.org/10.1016/j.pmatsci.2006.02.001.

23. Lee K.-H., Lee S.-K., Jeon K.-S. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing. Appl. Surf. Sci. 2009. 255. P. 4414–4420. https://doi.org/10.1016/j.apsusc.2008.11.047.

24. Rossi A.M., Ballarini V., Ferrero S., Giorgis F. Vibrational and emission properties of porous 6H-SiC. Mater. Sci. Forum. 2004. 457-460. P. 1475–1478. https://doi.org/10.4028/www.scientific.net/ MSF.457-460.1475.

25. Rittenhouse T.L., Bohn P.W., Hossain T.K. et al. Surface-state origin for the blueshifted emission in anodically etched porous silicon carbide. J. Appl. Phys. 2004. 95. P. 490–496. https://doi.org/10.1063/1.1634369.

26. Matsumoto T., Takahashi J., Tamaki T. et al. Blue-green luminescence from porous silicon carbide. Appl. Phys. Lett. 1994. 64. P. 226–228. https://doi.org/10.1063/1.111979.

27. Gavrilchenko I.V., Milovanov Y.S., Gryn S.V. et al. Spectral-luminescence properties of freestanding porous SiC layers. J. Lumin. 2021. 240. P. 118466. https://doi.org/10.1016/j.jlumin.2021.118466.

28. Lu W., Tarekegne A.T., Ou Y. et al. Temperature-dependent photoluminescence properties of porous fluorescent SiC. Sci. Rep. 2019. 9. P. 16333. https://doi.org/10.1038/s41598-019-52871-6.

29. Hassen F., M’Ghaieth R. et al. Morphological and optical characterization of porous silicon carbide. Mater. Sci. Eng. C. 2001. 15. P. 113–115. https://doi.org/10.1016/S0928-493101.00252-1.

30. Kim S., Spanier J.E., Herman I.P. Optical transmission, photoluminescence, and Raman scattering of porous SiC prepared from p-type 6H SiC. Jpn. J. Appl. Phys. 2000. 39. P. 5875–5878. https://doi.org/10.1143/JJAP.39.5875.

31. Lee K.-H., Du Y.-L., Lee T.-H. Photoluminescence and photoluminescence excitation from porous silicon carbide. Bull. Korean Chem. Soc. 2000. 21. P. 769–773. https://doi.org/10.5012/bkcs.2000.21.8.769.

32. Chen Z.M., Ma J.P., Yu M.B. et al. Light induced luminescence centers in porous SiC prepared from nano-crystalline SiC grown on Si by hot filament chemical vapor deposition. Mater. Sci. Eng. 2000. 75. P. 180–183. https://doi.org/10.1016/S0921-510700.00358-5.

33. Danishevskii M., Zamoryanskaya M.V., Sitnikova A.A. et al. TEM and cathodoluminescence studies of porous SiC. Semicond. Sci. Technol. 1998. 13. P. 111.

34. Jessensky O., Muller F., Gosele U. Microstructure and photoluminescence of electrochemically etched porous SiC. Thin Solid Films. 1997. 297. P. 224–228. https://doi.org/10.1016/S0040-609096.09419-9.

35. Konstantinov A.O., Henry A., Harris C.I., Janzen E. Photoluminescence studies of porous silicon carbide. Appl. Phys. Lett. 1995. 66. P. 2250–2252. https://doi.org/10.1063/1.113182.

36. Bacherikov Yu.Yu., Dmitruk N.L., Konakova R.V. et al. Formation of titanium oxide films on the surface of porous silicon carbide. Tech. Phys. 2008. 53. P. 1232–1235. https://doi.org/10.1134/S1063784208090168.

37. Bacherikov Y.Y., Konakova R.V., Lytvyn O.S. et al. Morphology and optical properties of titanium-doped porous silicon carbide layers. Tech. Phys. Lett. 2006. 32, No 4. P. 140–142. https://doi.org/10.1134/S1063785006020167.

38. Nguyen H.A., Miyajima K., Itoh T. et al. The effect of the etching process on the morphology and photoluminescence of porous amorphous SiC. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011. 2. P. 025009. https://doi.org/10.1088/2043-6262/2/2/025009.

39. Alekseev S., Korytko D., Iazykov M. et al. Electrochemical synthesis of carbon fluorooxide nanoparticles from 3C-SiC substrates. J. Phys. Chem. C. 2015. 119. P. 20503–20514. https://doi.org/10.1021/acs.jpcc.5b06524.

40. Wu X. L., Fan J. Y., Qiu T. et al. Experimental evi-dence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 2005. 94. 026102. https://doi.org/10.1103/PhysRevLett.94.026102.

41. Beke D., Szekrenyes Z., Czigany Z. et al. Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals. Nanoscale. 2015. 7. P. 10982–10988. https://doi.org/10.1039/C5NR01204J.

42. Lee H., Kim H., Seo H.S. et al. Comparative study of 4H-SiC epitaxial layers grown on 4 off-axis Si- and C-face substrates using bistrimethyl-silylmethane precursor. ECS J. Solid State Sci. Technol. 2015. 4. P. N89–N95. http://dx.doi.org/10.1149/2.0111508jss.

43. Kumari S., Kumar R., Agrawal P.R. et al. Fabri-cation of lightweight and porous silicon carbide foams as excellent microwave susceptor for heat generation. Mater. Chem. Phys. 2020. 253. P. 123211. https://doi.org/10.1016/j.matchemphys.2020.123211.

44. Bachurina D.V., Murzaev R.T., Nazarov A.A. Relaxation of dislocation structures under ultrasonic influence. Int. Journal of Solids and Structures. 2019. 156–157. P. 1–13. https://doi.org/10.1016/j.ijsolstr.2018.06.007.

45. Matare H.F. Defect Electronics in Semiconductors. New York, Wiley-Interscience, 1971.

46. Nowick A.S., Berry B.S. Anelastic Relaxation in Crystalline Solids. Academic Press, New York and London, 1972.

47. Zhou J., Xu W., You Z. et al. A new type of power energy for accelerating chemical reactions: The nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 2016. 6. P. 25149. https://doi.org/10.1038/srep25149.