Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 362-371 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.362


References

1. Liu X., Gao H., Ward J.E. et al. Power generation from ambient humidity using protein nanowires. Nature. 2020. 578. P. 550–554. https://doi.org/10.1038/s41586-020-2010-9.

2. Shen D., Duley W.W., Peng P. et al. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020. 32(52). P. 2003722. https://doi.org/10.1002/adma.202003722.

3. Yang L., Nandakumar D.K., Miao L. et al. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule. 2020. 4. P. 176. https://doi.org/10.1016/j.joule.2019.10.008.

4. Anselmi-Tamburini U., Maglia F., Chiodelli G. åt al. Enhanced low-temperature protonic conductivity in fully dense nanometric cubic zirconia. Appl. Phys. Lett. 2006. 89. P. 3116. https://doi.org/10.1063/1.2360934.

5. Dawson J.A., Tanaka I. Significant reduction in hydration energy for yttria stabilized zirconia grain boundaries and the consequences for proton conduction. Langmuir. 2014. 30. P. 10456. https://doi.org/10.1021/la501860k.

6. Guo X., Yuan R.Z. On the grain boundaries of ZrO2-based solid electrolyte. Solid State Ionics. 1995. 80. P. 159. https://doi.org/10.1016/0167-2738(95)00131-O.

7. Bacherikov Y.Y., Lytvyn P.M., Mamykin S.V. et al. Current transfer processes in a hydrated layer localized in a two-layer porous structure of nanosized ZrO2. J. Mater. Sci.: Mater. Electron. 2022. 33. P. 2753. https://doi.org/10.1007/s10854-021-07481-2.

8. Bacherikov Yu.Yu., Okhrimenko O.B. Principles of creating the devices that are able to control the current flow in the second class conductors. SPQEO. 2022. 25. P. 137. https://doi.org/10.15407/spqeo25.02.137.

9. Bacherikov Yu.Yu., Okhrimenko O.B., Goroneskul V.Yu. et al. The model of potential barrier appearing in a hydrolayer localized in a two-layer porous nanostructure. SPQEO. 2021. 24. P. 288. https://doi.org/10.15407/spqeo24.03.288.

10. Chaopradith D.T., Scanlon D.O., Catlow C.R.A. Adsorption of water on yttria-stabilized zirconia. J. Phys. Chem. C. 2015. 119. P. 22526. https://doi.org/10.1021/acs.jpcc.5b06825.

11. Eichler A., Kresse G. First-principles calculations for the surface termination of pure and yttria-doped zir-conia surfaces. Phys. Rev. B. 2004. 69. P. 045402. https://doi.org/10.1103/PhysRevB.69.045402.

12. Merle-Mejean T., Barberis P., Ben Othmane S. et al. Chemical forms of hydroxyls on/in zirconia: An FT-IR study. J. Europ. Ceram. Soc. 1998. 18. P. 1579. https://doi.org/10.1016/S0955-2219(98)00080-6.

13. Eder D., Kramer R. The stoichiometry of hydrogen reduced zirconia and its influence on catalytic activity. Part 1: Volumetric and conductivity studies. Phys. Chem. Chem. Phys. 2002. 4. P. 795. https://doi.org/10.1039/B109887J.

14. Wang X.-G., Chaka A., and Scheffler M. Effect of the environment on a-Al2O3 (0001) surface structures. Phys. Rev. Lett. 2000. 84. P. 3650. https://doi.org/10.1103/PhysRevLett.84.3650.

15. Reuter K. and Scheffler M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B. 2002. 65. P. 035406. https://doi.org/10.1103/PhysRevB.65.035406.

16. Sun Q., Reuter K. and Scheffler M. Effect of a humid environment on the surface structure of RuO2 (110). Phys. Rev. B. 2003. 67. P. 205424. https://doi.org/10.1103/PhysRevB.67.205424.

17. Muhammad S., Hussain S.T., Waseem M. et al. Surface charge properties of zirconium dioxide. Iran. J. Sci. & Technol. 2012. A4. P. 481. https://doi.org/10.22099/ijsts.2012.2110.

18. Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964. 136. P. 864. https://doi.org/10.1103/PhysRev.136.B864.

19. Tokiy N.V., Savina D.L., Tokiy V.V. Materials of Mediterranean-East-Europe Meeting “Multi-functional Nanomaterials (NanoEuroMed 2011)”. Ukraine, Uzhgorod, 2011. P. 165–166.

20. Nanohub tools at http://www.nanohub.org.

21. Klimeck G., McLennan M., Brophy S. et al. nanoHUB.org: Advancing Education and Research in Nanotechnology. IEEE Computers in Engineering and Science. 2008. 10. P. 17–23. https://doi.org/10.1109/MCSE.2008.120.

22. Palaria A., Wang X., Haley B. et al. ABINIT on nanoHUB. https://doi.org/10.4231/D3XS5JH8J.

23. http://www.abinit.org

24. Ewald P.P. Zur Begrundung der Kristalloptik. Ann. Phys. 1917. 359. P. 519. https://doi.org/10.1002/andp.19173592305.

25. Ewald P.P. Zur Begrundung der Kristalloptik. Ann. Phys. 1917. 359. P. 557. https://doi.org/10.1002/andp.19173592402.

26. Ewald P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921. 369. P. 253. https://doi.org/10.1002/andp.19213690304.