Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 372-378 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.372
References
1. Frenkel J. On the transformation of light into heat in solids. I. Phys. Rev. 1931. 37. P. 17–44. https://doi.org/10.1103/PhysRev.37.1276.
2. Davydov A.S. The theory of molecular excitons. Sov. Phys. Usp. 1964. 7. 145–186. http://iopscience.iop.org/0038-5670/7/2/R01.
3. Kasha M., Rawls H.R., El-Bayoumi M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965. 11. P. 371–392. https://doi.org/10.1351/pac196511030371/html.
4. Dimitriev O.P. Dynamics of excitons in conjugated molecules and organic semiconductor systems. Chem. Rev. 2022. 122. P. 8487–8593. https://doi.org/10.1021/acs.chemrev.1c00648.
5. https://www.collinsdictionary.com/dictionary/english/exciton.
6. Britannica, The Editors of Encyclopaedia. “exciton”. Encyclopedia Britannica, 20 Jul. 1998. https://www.britannica.com/science/exciton.
Accessed 8 August 2022.
7. Kafle T.R., Kattel B., Wang T., Chan W.-L. The relationship between the coherent size, binding energy and dissociation dynamics of charge transfer excitons at organic interfaces. J. Phys.: Condens. Matter. 2018. 30, No 45. P. 454001. https://doi.org/10.1088/1361-648X/aae50b.
8. Tretiak S., Saxena A., Martin R.L., Bishop A.R. Conformational dynamics of photoexcited conjuga-ted molecules. Phys. Rev. Lett. 2002. 89. P. 097402. https://doi.org/10.1103/PhysRevLett.89.097402.
9. Griffiths D.J. Introduction to Quantum Mechanics. Prentice-Hall. 1995. P. 137.
10. Scholes G.D., Rumbles G. Excitons in nanoscale systems. Nat. Mater. 2006. 5. P. 683–696. https://doi.org/10.1038/nmat1710.
11. Zhong C., Bialas D., Collison C.J., Spano F.C. Davydov splitting in squaraine dimers. J. Phys. Chem. C. 2019. 123. P. 18734–18745. https://doi.org/10.1021/acs.jpcc.9b05297.
12. Craig N.C., Groner P., McKean D.C. Equilibrium structures for butadiene and ethylene: compelling evidence for ?-electron delocalization in butadiene. J. Phys. Chem. A. 2006. 110. P. 7461–7469. https://doi.org/10.1021/jp060695b.
13. Morrison A.F., You Z.Q., Herbert J.M. Ab initio implementation of the Frenkel–Davydov exciton model: A naturally parallelizable approach to computing collective excitations in crystals and aggregates. J. Chem. Theory Comput. 2014. 10. P. 5366–5376. https://doi.org/10.1021/ct500765m.
14. You Z.Q., Hsu C.P., Fleming G.R. Triplet-triplet energy-transfer coupling: Theory and calculation. J. Chem. Phys. 2006. 124. P. 044506. https://doi.org/10.1063/1.2155433.
15. Curutchet C., Voityuk A.A. Distance dependence of triplet energy transfer in water and organic solvents: A qm/md study. J. Phys. Chem. C. 2012. 116. P. 22179–22185. https://doi.org/10.1021/jp306280y.
16. He X.F. Excitons in anisotropic solids: the model of fractional-dimensional space. Phys. Rev. B. 1991. 43. P. 2063–2068. https://doi.org/10.1103/PhysRevB.43.2063.
17. Jantayod A. Unconventional Rashba spin-orbit coupling on the charge conductance and spin polari-zation of a ferromagnetic/insulator/ferro-magnetic Rashba metal junction. Micromachines. 2022. 13. P. 1340. https://doi.org/10.3390/mi13081340.
18. Lafalce E., Amerling E., Yu Z.G. et al. Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nat. Commun. 2022. 13. P. 483. https://doi.org/10.1038/s41467-022-28127-9.
19. Rashba E.I. Symmetry of energy bands in crystals of wurtzite type: I. Symmetry of bands disregarding spin-orbit interaction. Sov. Phys. Solid State. 1959. 1. P. 368–380.
20. Rashba E.I. and Sheka V.I. Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin-orbit interaction included. New. J. Phys. 2015. 17. P. 050202. Originally published in Fiz. Tverd. Tela: Collected Papers. 1959. 2. P. 62–76. http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pd.
21. Katrich G.S., Kemnitz K., Malyukin Y.V., Ratner A.M. Distinctive features of exciton self-trapping in quasi-one-dimensional molecular chains (J-Aggregates). J. Lumin. 2000. 90. P. 55–71. https://doi.org/10.1016/S0022-2313(99)00609-2.
22. Rashba E.I. Theory of strong interactions of electron excitations with lattice vibrations in molecular crystals. 2. Optika i Spektroskopiya. 1957. 2. P. 88–98.
23. Toyozawa Y. Self-trapping of an electron by the acoustical mode of lattice vibration. I. Prog. Theor. Phys. 1961. 26. P. 29–44. https://doi.org/10.1143/PTP.26.29.
24. Bredas J.-L., Beljonne D., Coropceanu V., Cornil J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 2004. 104. P. 4971–5004. https://doi.org/10.1021/cr040084k.
25. Banerji N., Cowan S., Vauthey E., Heeger A.J. Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum. J. Phys. Chem. C. Nanomater. Interfaces. 2011. 115. P. 9726–9739. https://doi.org/10.1021/jp1119348.
26. Miyauchi Y., Hirori H., Matsuda K., Kanemitsu Y. Radiative lifetimes and coherence lengths of one-dimensional excitons in single-walled carbon nanotubes. Phys. Rev. B. 2009. 80. P. 081410. https://doi.org/10.1103/PhysRevB.80.081410.
27. Luer L., Hoseinkhani S., Polli D. et al. Size and mobility of excitons in (6, 5) carbon nanotubes. Nature Phys. 2009. 5. P. 54–58. https://doi.org/10.1038/nphys1149.
28. Mann C., Hertel T. 13 nm exciton size in (6, 5) single-wall carbon nanotubes. J. Phys. Chem. Lett. 2016. 7. P. 2276–2280. https://doi.org/10.1021/acs.jpclett.6b00797.
29. Varella M.T.D.N., Stojanovic L., Vuong V.Q. et al. How the size and density of charge-transfer excitons depend on heterojunction’s architecture.
J. Phys. Chem. C. 2021. 125. P. 5458–5474. https://doi.org/10.1021/acs.jpcc.0c10762.
30. Mewes S.A., Plasser F., Dreuw A. Universal exciton size in organic polymers is determined by nonlocal orbital exchange in time-dependent density functional theory. J. Phys. Chem. Lett. 2017. 8. P. 1205–1210. https://doi.org/10.1021/acs.jpclett.7b00157.
31. Tretiak S., Igumenshchev K., Chernyak V. Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Phys. Rev. B. 2005. 71. P. 033201. https://doi.org/10.1103/PhysRevB.71.033201.
32. Tanaka S., Miyata K., Sugimoto T. et al. Enhancement of the exciton coherence size in organic semiconductor by alkyl chain substitution. J. Phys. Chem. C. 2016. 120. P. 7941–7948. https://doi.org/10.1021/acs.jpcc.5b12686.
33. Kobayashi S., Sasaki F. Ultrafast spectroscopy of PICBr J aggregates: the dynamics of large cohe-rence length exciton. J. Lumin. 1994. 58. P. 113–116. https://doi.org/10.1016/0022-2313(94)90373-5.
34. Fidder H., Terpstra J., Wiersma D.A. Dynamics of Frenkel excitons in disordered molecular aggregates. J. Chem. Phys. 1991. 94. P. 6895–6907. https://doi.org/10.1063/1.460220.
35. Quenzel T., Timmer D., Gittinger M. et al. Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates. ACS Nano. 2022. 16. P. 4693– 4704. https://doi.org/10.1021/acsnano.1c11398.
36. Zhong X., Chervy T., Zhang L. et al. Energy trans-fer between spatially separated entangled mole-cules. Angew. Chem. Int. Ed. 2017. 56. P. 9034–9038. https://doi.org/10.1002/anie.201703539.
37. Rozenman G.G., Akulov K., Golombek A., Schwartz T. Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy. ACS Photonics. 2018. 5. P. 105–110. https://doi.org/10.1021/ascphotonics.7b01332.
38. Hou S., Khatoniar M., Ding K. et al. Ultralong-range energy transport in a disordered organic semiconductor at room temperature via coherent exciton-polariton propagation. Adv. Mater. 2020. 32. P. 2002127. https://doi.org/10.1002/adma.202002127.
39. Jia G.Y., Liu Y., Gong J.Y. et al. Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2. J. Mater. Chem. C. 2016. 4. P. 8822–8828. https://doi.org/10.1039/C6TC02502A.
40. Ma J., Wang L.W. Nanoscale charge localization in-duced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 2015. 15. P. 248–253. https://doi.org/10.1021/nl503494y.
41. Singh B.P. Optoelectronic and nonlinear optical processes in low dimensional semiconductors.
Bull. Mater. Sci. 2006. 29. P. 559–565. https://doi.org/10.1007/s12034-006-0004-3.
42. Kilina S., Tretiak S., Doorn S.K. et al. Cross-polarized excitons in carbon nanotubes. Proc. Natl. Acad. Sci. USA. 2008. 105, No 19. P. 6797–6802. https://doi.org/10.1073/pnas.0711646105.
43. Hiramoto M., Kubo M., Shinmura Y. et al. Bandgap science for organic solar cells. Electronics. 2014. 3. P. 351. https://doi.org/10.3390/electronics3020351.
44. Wang M., Li C.M. Excitonic properties of graphene-based materials. Nanoscale. 2012. 4. P. 1044–1050. https://doi.org10.1039/C1NR10885A.
45. Mokkath J.H. Delocalized exciton formation in C60 linear molecular aggregates. Phys. Chem. Chem. Phys. 2021. 23. P. 21901–21912. https://doi.org/10.1039/D1CP02430B.
| |
|
|