Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 379-384 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.379
References
1. Goriachko A., Over H. Modern nanotemplates based on graphene and single layer h-BN. Z. Phys. Chem. 2009. 223. P. 157168. https://doi.org/10.1524.zpch.2009.6030.
2. Goriachko A., He Y., Knapp M. et al. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir. 2007. 23. P. 29282931. https://doi.org/10.1021/la062990t.
3. Afanasieva T.V., Fedorus A.G., Goriachko A.M. et al. Mesoscopic self-ordering in oxygen doped Ce films adsorbed on Mo(112). Surf. Sci. 2021. 705. P. 121766. https://doi.org/10.1016/j.susc.2020.121766.
4. Rani E., Wong L.S. High-resolution scanning probe nanolithography of 2D materials: Novel nanostruc-tures. Adv. Mater. Technol. 2019. 4. P. 1900181. https://doi.org/10.1002/admt.201900181.
5. Bian K., Gerber C., Heinrich A.J. et al. Scanning probe microscopy. Nat. Rev. Methods Primers. 2021. 1. Art. No 36. https://doi.org/10.1038/s43586-021-00033-2.
6. Voigtlander B., Cherepanov V., Korte S. et al. Multi-tip scanning tunneling microscopy: Experimental techniques and data analysis. Rev. Sci. Instr. 2018. 89. P. 101101. https://doi.org/10.1063/1.5042346.
7. Khajetoorians A.A., Wegner D., Otte A.F., Swart I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 2019. 1. P. 703715. https://doi.org/10.1038/s42254-019-0108-5.
8. Katnagallu S., Dagan M., Parviainen S. et al. Impact of local electrostatic field rearrangement on field ionization. J. Phys. D: Appl. Phys. 2018. 51. P. 105601. https://doi.org/10.1088/1361-6463/aaaba6.
9. Maldonado J.R., Peckerar M. X-ray lithography: Some history, current status and future prospects. Microelectron. Eng. 2016. 161. P. 8793. https://doi.org/10.1016/j.mee.2016.03.052.
10. Scappucci G., Kloeffel C., Zwanenburg F.A. et al. The germanium quantum information route.
Nat. Rev. Mater. 2021. 6. P. 926943. https://doi.org/10.1038/s41578-020-00262-z.
11. Goriachko A., Melnik P.V., Nakhodkin M.G. A suggestion of the graphene/Ge(111) structure based on ultra-high vacuum scanning tunneling microscopy investigation. Ukr. J. Phys. 2016. 61. P. 7587. https://doi.org/10.15407/ujpe61.01.0075.
12. Goriachko A., Melnik P.V., Shchyrba A. et al. Initial stages of Bi/Ge(111) interface formation: A detailed STM study. Surf. Sci. 2011. 605. P. 17711777. https://doi.org/10.1016/j.susc.2011.06.004.
13. Goriachko A., Shchyrba A., Melnik P.V., Nakhodkin M.G. Bismuth growth on Ge(111): evolution of morphological changes from nano-crystals to films. Ukr. J. Phys. 2014. 59. P. 805818. https://doi.org/10.15407/ujpe59.08.0805.
14. Goriachko A., Melnik P.V., Nakhodkin M.G. New features of the Ge(111) surface with co-existing c(2?8) and 2?2 reconstructions investigated by scanning tunneling microscopy. Ukr. J. Phys. 2015. 60. P. 11321142. https://doi.org/10.15407/ujpe60.11.1132.
15. Lyubinetsky I.V. Key role of M.G. Nakhodkins insight and inspiration in development of UHV STM-related techniques and methods. Ukr. J. Phys. 2015. 60. P. 160164. https://doi.org/10.15407/ujpe60.02.0160.
16. Minamitani E., Takagi N., Arafune R. et al. Inelas-tic electron tunneling spectroscopy by STM of phonons at solid surfaces and interfaces. Prog. Surf. Sci. 2018. 93. P. 131145. https://doi.org/10.1016/j.progsurf.2018.09.002.
17. Necas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Centr. Eur. J. Phys. 2012. 10. P. 181188. https://doi.org/10.2478/s11534-011-0096-2.
| |
|
|