Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 413-421 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.413


References

1. Li L., Lou Z., Shen G. Hierarchical CdS nanowires based rigid and ?exible photodetectors with ultrahigh sensitivity. ACS Appl. Mater. Interfaces. 2015. 7. P. 23507–23514. https://doi.org/10.1021/acsami.5b06070.

2. Gu Y., Kwak E.S., Lensch J.L. et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 2005. 87. Art. No 043111. https://doi.org/10.1063/1.1996851.

3. Huang Y., Duan X., Lieber C.M. Nanowires for integrated multicolor nanophotonics. Small. 2005. 1. P. 142–147. https://doi.org/10.1002/smll.200400030.

4. Bao R., Wang C., Dong L. et al. CdS nano-rods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale. 2016. 8, No 15. P. 8078–8082. https://doi.org/10.1039/c6nr00431h.

5. Couteau C., Larrue A., Wilhelm C., Soci C. Nanowire lasers. Nanophoton. 2015. 4, No 1. P. 90–107. https://doi.org/10.1515/nanoph-2015-0005.

6. Garnett E.C., Brongersma M.L., Cui Y., McGehee M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011. 41. P. 269–295. https://doi.org/10.1146/annurev-matsci-062910-100434.

7. Brenneman K.L., Poduri S., Stroscio M.A., Dutta M. Optical detection of lead (II) ions using DNA-based nanosensor. IEEE Sensor Journal. 2013. 13, No 5. P. 1783–1786. https://doi.org/10.1109/JSEN.2013.2241757.

8. Zhu L., Feng C., Li F. et al. Excellent gas sensing and optical properties of single-crystalline cadmium sul?de nanowires. RSC Adv. 2014. 4. P. 61691–61697. https://doi.org/10.1039/C4RA11010B.

9. Mu L., Chang Y., Sawtelle S.D. et al. Silicon nanowire field-effect transistors – A versatile class of potentiometric nanobiosensors. IEEE Access. 2015. 3. P. 287–302. https://doi.org/10.1109/access.2015.2422842.

10. Kind H., Yan H., Messer B., Law M., Yang P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002. 14, No 2. P. 158–160. https://doi.org/10.1002/1521-4095.

11. Gazquez G.Ρ, Lei S., George A. et al. Low-cost, large-area, facile, and rapid fabrication of aligned ZnO nanowire device arrays. ACS Appl. Mater. Interfaces. 2016. 8. P. 13466–13471. https://doi.org/10.1021/acsami.6b01594.

12. Liang Y., Liang H., Xiao X., Hark S. The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection. J. Mater. Chem. 2012. 22, No 3. P. 1199–1205. https://doi.org/10.1039/c1jm13903g.

13. Zhang X., Liu Q., Liu B. et al. Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling. J. Mater. Chem. C. 2017. 5. P. 4319–4326. https://doi.org/10.1039/C7TC00594F.

14. Yan X., Li B., Wu Y., Zhang X., Ren X. A single crystalline InP nanowire photodetector. Appl. Phys. Lett. 2016. 109. Art. No 053109. https://doi.org/10.1063/1.4960713.

15. Gomes U.P., Ercolani D., Zannier V., Beltram F., Sorba L. Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods. Semicond. Sci. Technol. 2015. 30. Art. No 115012. https://doi.org/10.1088/0268-1242/30/11/115012.

16. Madelung O., Schulz M., Weiss H. Semiconductor Physics of Group II VI Compounds; New Series, Group III. Berlin, Landolt-Bornstein, 1982. https://doi.org/10.1007/b71137.

17. Heo K., Lee H., Park Y. et al. Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses. J. Mater. Chem. 2012. 22. P. 2173–2179. https://doi.org/10.1039/c2jm14359c.

18. Shen G., Cho J.H., Yoo J.K., Yi G.-C., Lee C.J. Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. J. Phys. Chem. B. 2005. 109. P. 9294–9298. https://doi.org/10.1021/jp044888f.

19. Poduri S., Dutta M., Stroscio M. Photo-luminescence characterization of cadmium sulphide (CdS) nanowires for polarization studies. Appl. Phys. Res. 2017. 9, No 6. P. 26–35. https://doi.org/10.5539/apr.v9n6p26.

20. Poduri S., Dutta M., Stroscio M. Characterization of CdS nanowires self-assembled in a nanoporous alumina template. J. Electronic Mater. 2014. 43, No 11. P 3979–3983. https://doi.org/10.1007/s11664-014-3305-0.

21. Geburt S., Thielmann A., Roder R. et al. Low threshold room-temperature lasing of CdS nano-wires. Nanotechnology. 2012. 23. Art. No 365204. https://doi.org/10.1088/0957-4484/23/36/365204.

22. Jang J.S., Joshi U.A., Lee J.S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C. 2007. 111. P. 13280–13287. https://doi.org/10.1021/jp072683b.

23. Alkuam E., Badradeen E., Guisbiers G. Influence of CdS morphology on the efficiency of dye-sensitized solar cells. ACS Omega. 2018. 3. P. 13433–13441. https://doi.org/10.1021/acsomega.8b01631.

24. Law M., Goldberger J., Yang P. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 2004. 34. P. 83–122. https://doi.org/10.1146/annurev.matsci.34.040203.112300.

25. Li D., Liu Y., de la Mata M. et al. Strain-induced spatially indirect exciton recombination in zinc-blende/wurtzite CdS heterostructures. Nano Res. 2015. 8, No 9. P. 3035–3044. https://doi.org/10.1007/s12274-015-0809-8.

26. Liu R.B., Zhuang X.J., Xu J.Y. et al. Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers. Appl. Phys. Lett. 2011. 99, No 26. P. 263101. https://doi.org/10.1063/1.3672032.

27. Wei S.-H., Zhang S.B. Structure stability and carrier localization in CdX (X = S, Se, Te) semiconduc-tors. Phys. Rev. B. 2000. 62, No 11. P. 6944–6947. https://doi.org/10.1103/physrevb.62.6944.

28. Zhang Q., Xing X., Zhou X., Xiong X., Zhai T. Stoichiometric effect on optoelectronic properties of composition-tunable CdS1?xSex nanowires. Adv. Opt. Mater. 2017. 5, No 5. Art. No 1600877. https://doi.org/10.1002/adom.201600877.

29. Zhu J., Jiang W., Wang B. et al. Highly efficient wurtzite/zinc blende CdS visible light photo-catalyst with high charge separation efficiency and stability. J. Chem. Phys. 2020. 152. Art. No 244703. https://doi.org/10.1063/5.0011132.

30. Ghosh A., Paul S., Raj S. Structural phase transformation from wurtzite to zinc-blende in uncapped CdS nanoparticles. Solid State Commun. 2013. 154. P. 25–29. https://doi.org/10.1016/j.ssc.2012.10.038.

31. Zhou Z., Li M., Wu P., Guo L. Revisiting the zinc-blende/wurtzite heterocrystalline structure in CdS. Adv. Condens. Matter Phys. 2014. 2014. P. 1–7. https://doi.org/10.1155/2014/361328.

32. Bogoslovskaya A.B., Grynko D.O., Bortchagovsky E.G., Gudymenko O.I. Luminescent analysis of the quality of CdS nanocrystals depending on technological parameters. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. P. 231–236. https://doi.org/10.15407/spqeo22.02.231.

33. Grynko D.A., Fedoryak A.N., Dimitriev O.P. et al. Growth of CdS nanowire crystals: Vapor–liquid–solid versus vapor–solid mechanisms. Surf. Coatings Technol. 2013. 230. P. 234–238. https://doi.org/10.1016/j.surfcoat.2013.06.058.

34. Georgobiani A.N., Sheynkman M.K. The Physics of AIIBVI Compounds. Moscow, Nauka, 1986 (in Russian).

35. Bogoslovskaya A.B., Khalimovskyy O.M., Grynko D.O. Piezo-mechanical impedance of nanosized CdS single crystal. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. P. 479–485. https://doi.org/10.15407/spqeo22.04.479.

36. Gao X., Pang G., Ni Z., Chen R. Surface-related exciton and lasing in CdS nanostructures. Nanoscale Res. Lett. 2019. 14, No 1. Art. No 216. https://doi.org/10.1186/s11671-019-3036-5.

37. Agata M., Kurase H., Hayashi S., Yamamoto K. Photoluminescence spectra of gas-evaporated CdS microcrystals. Solid State Commun. 1990. 76, No 8. P. 1061–1065. https://doi.org/10.1016/0038-1098(90)90084-O.

38. Liu B., Chen R., Xu X.L. et al. Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C. 2011. 115, No. 26. P. 12826–12830. https://doi.org/10.1021/jp203551f. 39. Veamatahau A., Jiang B., Seifert T. et al. Origin of surface trap states in CdS quantum dots: Relationship between size dependent photolumi-nescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 2015. 17, No 4. P. 2850–2858. https://doi.org/10.1039/c4cp04761c.

40. Zhao P.Q., Xiong S.J., Wu X.L., Chu P.K. Photoluminescence induced by twinning interface in CdS nanocrystals. Appl. Phys. Lett. 2012. 100. Art. No 171911. https://doi.org/10.1063/1.4707388.

41. Guo S., Zhao F.Y., Li Y. et al. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers, Appl. Phys. Lett. 2016. 109. Art. No 162101. https://doi.org/10.1063/1.4964879.

42. Zhang L., Liu R., Zou B. Sn-doped CdS nanowires with low temperature lasing by CW-laser excitation. ACS Appl. Electron. Mater. 2020. 2. P. 282–289. https://doi.org/10.1021/acsaelm.9b00766.

43. Chen O., Shelby D.E., Yang Y. et al. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nano-crystals. Angew. Chem. Internat. Ed. 2010. 49. P. 10132–10135. https://doi.org/10.1002/anie.201004926.

44. Xu J., Quan S., Zou Z. et al. Color-tunable photo-luminescence from In-doped CdS nanowires. Chem. Phys. Lett. 2016. 652. P. 216–219. https://doi.org/10.1016/j.cplett.2016.04.068.

45. Liu R., Chen Y., Wang F. et al. Stimulated emission from trapped excitons in SnO2 nanowires. Phys. E: Low-Dimens. Syst. Nanostruct. 2007. 39. P. 223–229. https://doi.org/10.1016/j.physe.2007.04.009.

46. Duboc C.A. Nonlinearity in photoconducting phos-phors. Brit. J. Appl. Phys. 1955. 6, No S4. P. S107–S111. https://doi.org/10.1088/0508-3443/6/S4/343.

47. Bube R.H. Analysis of photoconductivity applied to cadmium-sulfide-type photoconductor. J. Phys. Chem. Solids. 1957. 1. P. 234–248. https://doi.org/10.1016/0022-3697(57)90012-4.

48. Klasens H.A. The intensity-dependence of photo-conduction and luminescence of photoconductors in the stationary state. J. Phys. Chem. Solids. 1958. 7. P. 175–200. https://doi.org/10.1016/0022-3697(58)90260-9.

49. Reshchikov M.A., Olsen A.J., Bishop M.F., McMullen T. Superlinear increase of photolumi-nescence with excitation intensity in Zn-doped GaN. Phys. Rev. B. 2013. 88. Art. No 075204. https://doi.org/10.1103/PhysRevB.88.075204.

50. Pankove J.I. Optical Processes in Semiconductors. New York, Dover, 1971.

51. Fouquet J.E., Siegman A.E. Room-temperature photoluminescence times in a GaAs/AlxGa1-xAs molecular beam epitaxy multiple quantum well structure. Appl. Phys. Lett. 1985. 46, No 3. P. 280–282. https://doi.org/10.1063/1.95658.

52. Vigil O., Riech I., Garcia-Rocha M., Zelaya-Angel O. Characterization of defect levels in chemically deposited CdS films in the cubic-to-hexagonal phase transition. J. Vac. Sci. Technol. A. 1997. 15, No 4. P. 2282–2286. https://doi.org/10.1116/1.580735.

53. Wang C., Ip K.M., Hark S.K., Li Q. Structure control of CdS nanobelts and their luminescence properties. J. Appl. Phys. 2005. 97, No 5. Art. No 054303. https://doi.org/10.1063/1.1852094.

54. Wang Z.Q., Gong J.F., Duan J.H. et al. Direct synthesis and characterization of CdS nanobelts. Appl. Phys. Lett. 2006. 89. Art. No 033102. https://doi.org/10.1063/1.2222237.

55. Torres-Castanedo C.G., Marquez-Marin J., Castanedo-Perez R. et al. Optical properties of CdS nanocrystalline thin films in the abrupt phase transition from zinc blende to wurtzite. J. Mater. Sci.: Mater. Electron. 2020. 31. P. 16561–16568. https://doi.org/10.1007/s10854-020-04211-y.

56. Bergman L., Chen X.-B., Morrison J.L., Huso J., Purdy A.P. Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders. J. Appl. Phys. 2004. 96, No 1. P. 675–682. https://doi.org/10.1063/1.1759076.