Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 422-428 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.422


References

1. Kaur N., Kaur S., Singh J., Rawat M. A review on zinc sulphide nanoparticles: From synthesis, properties to applications. J. Bioelectron. Nanotechnol. 2016. 1, No 1. P. 1–5. https://doi.org/10.13188/2475-224x.1000006.

2. Ummartyotin S., Bunnak N., Juntaro J. et al. Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sciences. 2012. 14, No 3. P. 299–304. https:// doi.org/10.1016/j.solidstatesciences.2011.12.005.

3. Bacherikov Yu.Yu., Zelensky S.E., Zhuk A.G. et al. Luminescent properties of fine-dispersed ZnS:Cu prepared using self-propagating high-temperature synthesis. SPQEO. 2014. 17, No 4. P. 374–379. http://dspace.nbuv.gov.ua/handle/123456789/118418.

4. Lahariya V., Dhoble S.J. Development and advan-cement of undoped and doped zinc sulfide for phos-phor application. Displays. 2022. 74. P. 102186. https://doi.org/10.1016/j.displa.2022.102186.

5. Bacherikov Yu.Yu., Korsunska N.E., Kladko V.P. et al. Structural transformations in ZnS:Cu in the course of thermal annealing. Semiconductors. 2012. 46, No 2. P. 188–192. https://doi.org/10.1134/S1063782612020030.

6. Bol A.A., Ferwerda J., Bergwerff J.A., Meijerink A. Luminescence of nanocrystalline ZnS:Cu2+. J. Lumin. 2002. 99. P. 325–334. https://doi.org/10.1016/S0022-2313(02)00350-2.

7. Hasanzadeh J., Taherkhani A., Ghorbani M. Luminescence and structural properties of ZnS:Cu nanocrystals prepared using a wet chemical technique. Chin. J. Phys. 2013. 51, No 3. P. 540–550. https://doi.org/10.6122/CJP.51.540.

8. Al-Jawad S.M.H. and Ismail M.M. Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nano-particles. J. Opt. Technol. 2017. 84. P. 495–499. https://doi.org/10.1364/JOT.84.000495.

9. Yazici A.N., Oztas M., Bedir M. The thermolumi-nescence properties of copper doped ZnS nano-phosphor. Opt. Mater. 2007. 29, No 8. P. 1091–1096. https://doi.org/10.1016/j.optmat.2006.04.010.

10. Kaur J., Dubey V., Suryanarayana N. et al. Thermo-luminescence study of ZnS:Cu nanoparticles. Res. Chem. Intermed. 2013. 39, No 8. P. 3895–3900. https://doi.org/10.1007/s11164-012-0905-2.

11. Wanjari L., Bisen D.P., Brahme N., Prasad Sahu I. Thermoluminescence characteristics of ZnS:Cu nanoposphors. J. Optoelectron. Biomed. Mater. 2015. 7, No 3. P. 59–65.

12. https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry. (Inorganic Chemistry. LibreTexts (Text-map of Housecroft’s text), University of California, 2022. Structures and energetics of metallic and ionic solids, 6.11E: Structure – Zinc Blende (ZnS)). 13. Bacherikov Yu.Yu., Okhrimenko O.B., Zhuk A.G. et al. Selective introduction of Cu impurity into fine-dispersed ZnS obtained during process of one-stage synthesis. Nanoscale Res. Lett. 2017. 12. P. 511–515. https://doi.org/10.1186/s11671-017-2274-7.

14. Gumenjuk A.F., Kutovyi S.Yu. Oscillator rule of the trap activation energies in NaCl crystals. Centr. Europ. J. Phys. 2003. 1, No 2. P. 307–331. https://doi.org/10.2478/BF02476299.

15. Gumenyuk A.F., Kutovyi S.Yu., Stanovyy O.P., Pachshenko V.G. Oscillatory rule in the energy spectrum of traps in KCl and NaI crystals. Ukr. J. Phys. 2009. 54, No 10. P. 999–1006. https://doi.org/10.48550/arXiv.1003.5573.

16. Stanovyi O., Kutovyy S., Morozov Yu. et al. Low-temperature thermoluminescence studies of the nanocrystalline yttria-stabilized zirconia. Ukr. J. Phys. 2016. 61, No 6. P. 489–494. https://doi.org/10.15407/ujpe61.06.0489.

17. Kutovyy S., Kormilitsina A., Stanovyi O. et al. Com-parison of characteristics of thermostimulated lumi-nescence of CdS nanostructures obtained by green synthesis and chemical method. Journal of Nano- and Electronic Physics. 2022. 14, No 2. P. 02018 (6 p.). https://doi.org/10.21272/jnep.14(2).02018.

18. Furetta C. Handbook of Thermoluminescense. 2nd Ed. World Scientific, 2010. https://doi.org/10.1142/7187.

19. Chen W., Wang Z., Lin Z., Lin L. Absorption and luminescence of the surface states in ZnS nanoparticles. J. Appl. Phys. 1997. 82, No 6. P. 3111–3115. https://doi.org/10.1063/1.366152.

20. Veamatahau A., Jiang B., Seifert T. et al. Origin of surface trap states in CdS quantum dots: Relationship between size dependent photo-luminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 2015. 17, No 4. P. 2850–2858. https://doi.org/10.1039/c4cp04761c.