Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 429-440 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.429
References
1. De Cauwer H., Somville F.J.M.P., Joillet M. Neurological aspects of chemical and biological terrorism: Guidelines for neurologists. Acta Neurol. Belg. 2017. 117. P. 603–611. https://doi.org/10.1007/s13760-017-0774-y.
2. Zehra N., Kalita A., Malik A.H. et al. Conjugated polymer-based electrical sensor for ultratrace vapor-phase detection of nerve agent mimics. ACS Sens. 2020. 5. P. 191–198. https://doi.org/10.1021/acssensors.9b02031.
3. Kim K., Tsay O.G., Atwood D.A., Churchill D.G. Destruction and detection of chemical warfare agents. Chem. Rev. 2011. 111. P. 5345–5403. https://doi.org/10.1021/cr100193y.
4. Zeng L., Zeng H., Jiang L. et al. A single fluores-cent chemosensor for simultaneous discriminative detection of gaseous phosgene and a nerve agent mimic. Anal. Chem. 2019. 91. P. 12070–12076. https://doi.org/10.1021/acs.analchem.9b03230.
5. Garcia-Briones G.S., Olvera-Sosa M., Palestino G. Novel supported nanostructured sensors for chemical warfare agents (CWAs) detection. In: C. Bittencourt, C. Ewels, E. Llobet (eds) Nanoscale Materials for Warfare Agent Detection: Nano-science for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. 2019. P. 225–251. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_11.
6. Zhu R., Azzarelli J.M., Swager T.M. Wireless hazard badges to detect nerve-agent simulants. Angew. Chem. Int. Ed. 2016. 55, No 3. P. 9662–9666. https://doi.org/10.1002/anie.201604431.
7. Park S.Y., Kim Y., Kim T. et al. Chemoresistive materials for electronic nose: Progress, perspec-tives, and challenges. InfoMat. 2019. 1, No 3. P. 289–316. https://doi.org/10.1002/inf2.12029.
8. Kaushik A., Kumar R., Arya S.K. et al. Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 2015. 115. P. 4571–4606. https://doi.org/10.1021/cr400659h.
9. Potyrailo R.A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 2016. 116. P. 11877– 11923. https://doi.org/10.1021/acs.chemrev.6b00187.
10. Bigiani L., Zappa D., Barreca D. et al. Sensing nitrogen mustard gas simulant at the ppb scale via selective dual-site activation at Au/Mn3O4 interfaces. ACS Appl. Mater. Interfaces. 2019. 11. P. 23692–23700. https://doi.org/10.1021/acsami.9b04875.
11. Bigiani L., Zappa D., Maccato C. et al. Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Appl. Surf. Sci. 2020. 512. Art. id. 145667. https://doi.org/10.1016/j.apsusc.2020.145667.
12. Chang C.P., Yuan C.L. The fabrication of a MWNTs–polymer composite chemoresistive sensor array to discriminate between chemical toxic agents. J. Mater. Sci. 2009. 44. P. 5485–5493. https://doi.org/10.1007/s10853-009-3766-3.
13. Cho S., Kwon O.S., You S.A., Jang J. Shape-controlled polyaniline chemiresistors for high-performance DMMP sensors: Effect of morphologies and charge-transport properties. J. Mater. Chem. A. 2013. 1. P. 5679–5688.https://doi.org/10.1039/C3TA01427D.
14. Yu H., Han H., Jang J., Cho S. Fabrication and optimization of conductive paper based on screen-printed polyaniline/graphene patterns for nerve agent detection. ACS Omega. 2019. 4. P. 5586–5594. https://doi.org/10.1021/acsomega.9b00371.
15. Lee J.S., Shin D.H., Jun J., Jang J. Multidimen-sional polypyrrole/iron oxyhydroxide hybrid nanoparticles for chemical nerve gas agent sensing application. ACS Nano. 2013. 7. P. 10139–10147. https://doi.org/10.1021/nn404353w.
16. Jun J., Lee J.S., Shin D.H. et al. Fabrication of a one-dimensional tube-in-tube polypyrrole/tin oxide structure for highly sensitive DMMP sensor applications. J. Mater. Chem. A. 2017. 5. P. 17335–17340. https://doi.org/10.1039/C7TA02725G.
17. Fennell J.F., Hamaguchi H., Yoon B., Swager T.M. Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes. Sensors. 2017. 17. Article id. 982. https://doi.org/10.3390/s17050982.
18. Ogurtsov N., Bliznyuk V., Mamykin A. et al. Poly-(vinylidene fluoride)/poly(3-methylthiophene) core-shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Phys. Chem. Chem. Phys. 2018. 20. P. 6450–6461. https://doi.org/10.1039/C7CP07604E.
19. Kukla O.L., Mamykin A.V., Pud A.A. et al. Nano-structured electroconductive composite materials for detecting phosphorus and chlororoganic substances. Collection of scientific papers, X Int. sci. conf. “Functional basis of nanoelectronics”. September 16–21, 2019, Kharkiv–Odesa, Ukraine. Ð. 70–73.
20. Kukla O.L., Mamykin A.V., Ogurtsov N.A. et al. Properties of the nanocomposite based on poly(3-methylthiofene). Abstracts of 16th Int. conf. “Physics and technology of thin films and nanosystems” (ICPTTFN-XV²). May 15–20, 2017, Ivano-Frankivsk, Ukraine. P. 292.
21. Ogurtsov N., Bliznyuk V., Mamykin A. et al. En-hanced properties of the conducting polymer in the PVDF/poly(3-methylthiophene) nanocomposites. Abstracts of 11th Int. conf. “Electronic processes in organic and inorganic materials” (ICEPOM-11). May 21-25, 2018, Ivano-Frankivsk, Ukraine. P. 56.
22. Myronyuk I.Ye., Mamykin A.V., Kukla O.L., Pud A.A. The doping degree effects in sensitivity of polyaniline and its coreshell composite with polyvinylidene fluoride to the volatile organic acids. Abstracts of 11th Int. conf. “Electronic processes in organic and inorganic materials” (ICEPOM-11). May 21–25, 2018, Ivano-Frankivsk, Ukraine. P. 132.
23. Ballantine D.S., Martin S.J. White R.M. et al. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications. Acad. Press, New York, 1997. P. 237.
24. Auge J., Hauptmann P., Eichelbaum F., Rosler S. Quartz crystal microbalance sensor in liquids. Sensors and Actuators B. 1994. 18–19. P. 518–522. https://doi.org/10.1016/0925-4005(93)00983-6.
25. Calixarenes. Z. Asfari, V. Boehmer, J. Harowfield, J. Vicens (Eds.). Kluwer Academic Publishers, Dodrecht, 2001. P. 496–512.
26. Safina G., Gavrilova O., Ziganshin M. et al. recognition of chloroform by divergent poly-morphic transitions in tert-butylthiacalix[4]arene tetrasubstituted with N-(2-hydroxyethyl)-carba-moylmethoxy groups in a lower rim. Mendeleev Communications. 2011. 21, No 5. P. 291–292. https://doi.org/10.1016/j.mencom.2011.09.022.
27. Kazantseva Z.I., Koshets I.A., Drapailo A.B. et al. Sensory features of tiacalixarene films towards toxic and explosive volatile compounds. Sensor Electronics and Ìicrosystem Technologies. 2021. 18, No 3. P. 51– 63. https://doi.org/10.18524/1815-7459.2021.3.241064.
28. Boublik T., Fried V. and Hala E. The Vapour Pressures of Pure Substances. Second Revised Edition. Amsterdam, Elsevier, 1984.
29. Ogurtsov N.A., Mamykin A.V., Kukla O.L. et al. The impact of interfacial interactions on structural, electronic, and sensing properties of poly(3-methylthiophene) in core-shell nanocomposites. Application for chemical warfare agent simulants detection. Macromol. Mater. Eng. 2022. 307. P. 2100762. https://doi.org/10.1002/mame.202100762.
30. Mikhaylov S., Ogurtsov N., Noskov Yu. et al. Ammonia/amines electronic gas sensors based on hybrid polyaniline-TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Adv. 2015. 5. P. 20218–20226. https://doi.org/10.1039/C4RA16121A.
31. Ogurtsov N.A., Pud A.A., Mamykin A.V., Kukla O.L. Conductive polymer composite based on poly-3-methylthiophene for sensor measurements. Ukrainian patent for a utility model UA ¹131913, publ. 11.02.2019, Bull. ¹3.
32. Sauerbrey G. Verwendung von Schwingquartzen zur Wagung dunner Schichten und zur Mikrowagung. Z. Physik. 1959. 155. P. 206–222. https://doi.org/10.1007/BF01337937.
33. McKelvey J.M. and Hoelscher H.E. Apparatus for preparation of very dilute gas mixtures. Analytical Chemistry. 1957. 29, No 1. P. 123–124. https://doi.org/10.1021/ac60121a036.
34. Kharchenko S., Drapailo A., Shishkina S. et al. Dibutyl phosphinoylmethyloxythiacalix[4]arenes. Synthesis, structure, americium, europium and technetium extraction. Supramolecular Chemistry. 2014. 26 (10-12). P. 864–872. https://doi.org/10.1080/10610278.2014.890198.
35. Jurs P.C., Bakken G.A., McClelland H.E. Computa-tional methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 2000. 100. P. 2649–2678. https://doi.org/10.1021/cr9800964
| |
|
|