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Abstract. Investigated in this work is the effect of post-annealing temperature on ZnO 

nanocrystalline thin films doped with 5 at.% tellurium. The spin coating method was used 

to deposit films on the microscopic glass substrates. XRD, AFM, and UV-spectro-

photometry were used to characterize the films structure, surface roughness and optical 

properties. The XRD spectra showed that the nanocrystalline films are of monocrystalline 

nature. AFM has confirmed the nanocrystalline character of tellurium-doped ZnO. The 

transmission of exposed films has been decreased with the increase of annealing 

temperature. The average transmission of all the films has been revealed to be higher than 

80%. The optical band gap varies slightly with post-annealing temperature. 
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1. Introduction 

The n-type semiconductor zinc oxide (ZnO) is a 

promising material for various optoelectronics 

applications because of its wide band gap (3.3 eV) and 

outstanding optical and electrical properties at room 

temperature [1, 2]. The nanocrystalline and particle size 

of ZnO films play a significant role in increasing the 

sensitivity of UV sensors that use ZnO as an active 

material. This is caused by the fact that these films have 

technological applications, namely: laser diodes, light 

emitting diodes, solar cells, ultraviolet lasers, and thin 

film transistors [3, 4]. Pure ZnO nanocrystalline films 

have various limitations; pure ZnO films have unstable 

electrical and optical characteristics. As a result, ZnO 

cannot be applied in its pure form and must be doped 

with proper chemical elements [5, 6]. For example, the 

element tellurium (Te) is regarded as a chalcogen family 

dopant that can enhance the physical and chemical 

characteristics of ZnO films. The doped ZnO films are 

used in a variety of technological applications. Besides, 

due to their low raw material cost, Te doped ZnO thin 

films are very interesting [7]. 

Te doped ZnO nanocrystalline films are obtained 

using many deposition techniques, such as spray 

pyrolysis [8], pulsed laser deposition [9], chemical 

precipitation [10], and sol-gel ones [11] etc. Among these  

 

methods, sol-gel is particularly useful due to its lower 

processing temperature, environmental friendliness, and 

it requires no expensive equipment [12]. It is aimed at 

making the 5 at.% Te doped ZnO nanocrystalline films 

produced by varying the post-annealing temperature, 

which is considered to have a significant role, when 

using the sol-gel process. Tellurium-doped ZnO films 

have received little attention yet. Detailed examination of 

the films was performed to investigate the changes in 

ZnO structure, surface roughness and optical 

characteristics with 5% Te doping. 

2. Experimental and characterization 

2.1. Experimental 

Sol-gel spin coating method was used to prepare 

tellurium doped zinc oxide (ZnOTe) thin films on a 

microscopic glass substrate. The source materials for Zn 

and Te are zinc acetate dihydrate (C4H6O4Zn·2H2O) and 

tellurium dioxide (TeO2), respectively. Ethanolamine 

(H2NCH2CH2OH) was used as the stabilizer, and  

2-methoxyethanol (C3H8O2) was used as the solvent. 

Precursor solutions of 0.4 M for tellurium doped ZnO 

thin films were prepared by dissolving 5 at.% tellurium 

tetrachloride powder in zinc acetate dehydrate powder in 

2-methoxyethanol and stirring at 80 °C for 30 min with a 

hot magnetic stirrer. Ethanolamine was then in use as a  
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stabilizer. The precursor and stabilizer molar ratio was 

maintained at the level 1:1. Finally, the solution was aged 

for 12 hours at ambient temperature to produce a clear, 

homogenous solution. The final solution was applied to 

clean microscopic glass substrates (1.5×2 cm) using the 

spin coating technique at 2500 rpm for 25 min. To 

achieve the desired thickness, the coating technique was 

repeated ten times. All of the films were preheated at 

200 °C for 5 min after each coating. Finally, the post 

annealing temperature of the spin coated thin films was 

changed to 225 °C, 275 °C, 325 °C, and 375 °C in a 

furnace for two hours to explore the influence of the 

post-annealing temperature on the structural, surface 

roughness, and optical properties.  

3. Results and discussion 

3.1. Structural analysis 

An X-ray diffractometer (model: Rigaku Miniflex 600) 

with Cu-Kα radiation (λ = 1.54059 Å) was used to 

examine the crystalline orientation and the phase 

structure of the films. Fig. 1 shows the XRD pattern of 

5 at.% tellurium doped ZnO nanocrystalline glass film 

after annealing at 375 °C. The XRD pattern indicates that 

the 5 at.% Te doped ZnO nanocrystalline film has 

hexagonal wurtzite structure with matching JCPDS card 

number 36-1451 [13]. The prominent peak at 34.40° is 

consistent with hexagonal ZnO in the (002) orientation. 

For the (002) diffraction peak, the film’s full width at 

half maximum (FWHM) is 0.538°. 

The average crystalline grain size (D) was 

determined using Scherrer’s equation from the diffraction 

peak (002) [13]: 






cos

K
D , 

where λ is the incident X-ray wavelength (1.5405 Å), 

K = 0.94, β is the Bragg diffraction angle and θ is full 

width at half maximum (FWHM). The calculated average 

crystal grain size of the deposited 5% Te doped ZnO 

nanocrystalline sample was 16.14 nm. 

 

 

 
 
Fig. 1. XRD pattern for 5 at.% Te doped ZnO nanocrystalline 

film annealed at 375 °C. 

 

 
 

Fig. 2. Surface roughness with the 3D image for 5 at.% Te 

doped ZnO nanostructure film annealed at 375 °C. 

 

 

3.2. AFM 

The surface morphology of the deposited post-annealed 

film was investigated using the TriA SPM atomic force 

microscopy (AFM) instrument. Fig. 2 shows the 3D 

image of 5 at.% tellurium-doped ZnO nanocrystalline 

thin film that was post-annealed at 375°C. The scanned 

area was 50×50 µm, as seen in the image. AFM showed 

an average surface roughness of 10.8497 nm. 

 
 

 
(a) 

 

 
(b) 

 

Fig. 3. (a) Optical transmittance spectra for the 5% Te doped 

ZnO nanocrystalline films. (b) A plot of average transmission 

vs post-annealing temperature. 
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Fig. 4. Tauc’s plot for the calculated bandgap energy of 5 at.% 

Te doped ZnO nanocrystalline films. 

 
 

3.3. Optical properties 

UV–visible spectrophotometer (model: Shimadzu UV-

2600) was used to study optical characteristics. Fig. 3a 

shows the optical transmission spectra from ultraviolet to 

near-infrared region, which was determined to be ~88% 

within the range 370 up to 750 nm. The transmittance 

spectra of Te-doped ZnO nanocrystalline films were 

examined. Also, the transmittance edges were shifted to 

lower wavelengths when the annealing temperature of Te 

doped ZnO nanocrystalline films was increased. Shown 

in Fig. 3b is a plot of average transmission vs post-

annealing temperature, the average transparency 

decreased with increasing the annealing temperature. 

The optical bandgap of the 5 at.% Te doped ZnO 

nanocrystalline films can be calculated using the Tauc 

equation [14]: 

    n
g

n
DEhh 11
 , 

where hν is the photon energy, α is the absorption 

coefficient, Eg is the optical bandgap, and D is a constant. 

For a direct transition, the value of n = 1/2 in this 

equation. 

Fig. 4 shows the graph of (αhν)
2
 vs photon energy 

(hν) of the deposited 5 at.% Te doped ZnO nano-

crystalline films. For these films, the bandgaps were 

calculated and equal to 3.265, 3.300, 3.310 and 3.330 eV. 

For the Te doped ZnO sample, the bandgap was observed 

to increase with increasing the annealing temperature and 

was similar to the results reported by F. Khosravi-Nejad, 

M. Teimouri et al. [15].  

4. Conclusion 

5 at.% Te doped ZnO nanocrystalline films have been 

deposited by sol-gel method on glass substrates. Post-

annealing temperature treatment has been shown for the 

structural, surface roughness and optical characteristics 

of Te doped ZnO films. The XRD spectra imply that the 

nanocrystalline films are of monocrystalline nature. With 

increasing the annealing temperature, crystallinity of the  

 

Te doped ZnO thin films became improved. The 

crystalline grain size was found to be close to 16.14 nm. 

AFM images have shown that the tellurium doped ZnO 

films are of nanocrystalline nature. The average trans-

mittance of more than 80% in the visible region was 

inherent to the deposited films, and their transparency 

decreased with increasing the post-annealing tempera-

ture. The substantial variation in the bandgap value is 

caused by increasing the post-annealing temperature in 

the Te doped ZnO structure. Hence, these properties are 

promising for application in technology of optoelectronic 

devices. 
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Вплив температури після відпалу на оптичні та поверхневі властивості нанокристалічних плівок ZnO, 

легованих телуром 

A.U. Sonawane
1*

, B.K. Sonawane
2
 

Анотація. У цій роботі досліджено вплив температури після відпалу на тонкі нанокристалічні плівки ZnO, 

леговані 5 ат.% телуру. Для нанесення плівок на мікроскопічну скляну підкладку використовувався метод 

спін-коутингу. Для характеристики структури плівок, шорсткості поверхні та оптичних властивостей 

використовували рентгеноструктурний аналіз, атомну силову мікроскопію та УФ-спектрофотометрію. 

Рентгеноструктурні спектри показали, що нанокристалічні плівки мають монокристалічну природу. Атомна 

силова мікроскопія підтвердила нанокристалічний характер ZnO, легованого телуром. Пропускання 

експонованих плівок зменшилося зі збільшенням температури відпалу. Виявлено, що середня пропускна 

здатність усіх плівок перевищує 80%. Ширина забороненої зони незначно змінюється залежно від 

температури після відпалу. 

Ключові слова: золь-гель,  нанокристалічні плівки, температура відпалу, атомна силова мікроскопія. 
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