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Abstract. The structure and vibrational properties of glassy Ge19Te81 and Ga7.9Ge11.5Te80.6 

alloys were studied using X-ray diffraction and Raman spectroscopy. The amorphous 

nature of the obtained alloys was confirmed by the experimental X-ray diffraction patterns. 

The latter were used for calculating radial distribution functions. Such calculations gave the 

positions of the nearest-neighbour peak r1 – 2.65 Å and second nearest-neighbour peak r2 – 

4.31 and 4.44 Å. The obtained r1 values are in good agreement with the known from 

literature Ge-Te and Ga-Te bond lengths. Similar r1 values were also observed for Ga-Ge-

Te glasses of different compositions. The r2/r1 values of 1.63 and 1.68 are close to the 

typical value for a regular tetrahedron structure. The observed bands in the Raman spectra 

of the studied Ga-Ge-Te samples show that such glasses contain different nanophases. The 

Raman spectra may be interpreted in terms of vibrational modes of Ga-Te and Ge-Te 

binary glasses and films. 
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1. Introduction 

 

Chalcogenide glasses are highly valued for their diverse 

scientific and technological applications, including 

memory switching, optical storage, holography, thermal 

imaging, night vision, biosensing, space exploration, 

medical diagnostics, and environmental monitoring  

[1–6]. Among the unique characteristics of chalcogenide 

glasses, a wide range of optical transparency, high values 

of linear and non-linear refractive index, photo-structural 

transformations accompanied by changes of optical and 

chemical properties [2], photo-induced effects such as 

photo-darkening and bleaching, local expansion or 

contraction, changes of the refractive index, polarization-

dependent structural changes, and photoinduced dichroism 

[1, 2, 7, 8] are particularly noteworthy. The properties of 

chalcogenide glasses can be further influenced and tailored 

by changing composition, doping, and fabricating nano-

composites [3, 4, 9–15]. Nanocomposite materials based 

on chalcogenide glasses may offer direct recording of 

surface reliefs with polarization dependent recording 

process [16]. 

Within the diverse family of chalcogenide glasses, 

Ga-Ge-Te alloys stand out due to their excellent far- 

 

infrared (FIR) properties [10, 17–20]. These include an 

exceptional optical transmission window ranging from 

1.99 μm in the bandgap to 28 μm in the phonon region 

[10]. Additionally, in thin films, these alloys exhibit 

phase change-type optical memory, enabling rapid and 

reversible transitions between amorphous and crystalline 

states, with differing optical properties and conductivities 

[21, 22]. These attributes make them suitable for sensor 

applications as well [3, 4]. 

One should note that the possibility to control 

structural features of chalcogenide glasses and films is 

important to improve the characteristics of glasses and 

processes in them, including the photoinduced ones. 

Addition of Ga to GeTe alloys improves the amorphous 

phase stability (increases the crystallization temperature) 

and, hence, influences on the speed of crystallization and 

room temperature stability [9], and enhances the ability 

to form glass [3]. Therefore, better understanding of the 

structural properties of chalcogenide glasses is essential 

for optimizing their characteristics. In particular, the 

relief formation processes in composite nanomultilayer 

structures based on chalcogenide glasses are promising 

for direct information recording, data storage, and far-IR 

optics. 
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In the present report, amorphous Ga-Ge-Te alloys 

were studied by X-ray diffractometry and Raman 

spectroscopy. 

2. Experimental details 

The studied bulk Ga-Ge-Te alloys were prepared by the 

conventional melt quenching technique, the details of 

which can be found in [23]. In this work, we studied the 

following alloys: Ge19Te81 and Ga7.9Ge11.5Te80.6 (Fig. 1). 

The glassy domain in the Ga-Ge-Te system is 

limited to a small region centered on the GeTe4-GaTe3 

pseudobinary line (Fig. 1) [10, 18]. It can be seen from 

Fig. 1 that the studied Ga-Ge-Te glass compositions lie 

within the glassy domain. The composition of the studied 

glasses was controlled using energy-dispersive X-ray 

spectroscopy (EDX). Fig. 2 shows an electronic 

microscope (EM) image of the surface of the studied 

Ga7.9Ge11.5Te80.6 glass. The white rectangle in this figure 

indicates the probing area. Fig. 3 presents the EDX 

spectrum of the Ga7.9Ge11.5Te80.6 glass. 
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Fig. 1. Glassy domain limits in the Ga-Ge-Te system according 

to:  - - - - [10] and ••••••• [18] and studied glass compositions:  

● – Ge19Te81, ▲ – Ga7.9Ge11.5Te80.6, and  – Ga11.7Ge14.1Te74.2 

[23]. 

 

 

 
 
Fig. 2. EM image of the surface of the studied Ga7.9Ge11.5Te80.6 

glass. The rectangle indicates the probing area. 
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Fig. 3. EDX spectrum of the examined Ga7.9Ge11.5Te80.6 glass. 

The abscissa axis represents the energy of X-ray quanta (keV), 

and the ordinate axis represents the fluorescence intensity 

(cps/ev). 
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Fig. 4. XRD pattern of the Ga7.9Ge11.5Te80.6 glass. Inset: bulk 

Ga7.9Ge11.6Te80.6 glass. 
 

 

X-ray diffraction (XRD) patterns of the samples 

were recorded with an X-ray diffractometer having the 

Bragg–Brentano geometry, using Cu Ka radiation source 

with λ = 1.54178 Å and mounted graphite 

monochromator for the diffracted beam. The diffraction 

data in the range of the scattering vector magnitudes Q 

between 0.4 and 8 Å,   sin4Q , were collected. 

All the samples were examined in the transmission 

geometry. All the X-ray experiments were performed at 

ambient temperature. The XRD patterns of the studied 

Ga-Ge-Te alloys confirmed the amorphous nature of the 

samples. In Fig. 4, an XRD pattern of the 

Ga7.9Ge11.5Te80.6 glass is shown as an example. 

Radial distribution function (RDF(r)) is defined as 

the number of atoms lying at distances in the range 

( drrr , ) from the center of an arbitrary atom and is 

written as follows: 

   rrrRDF  24 .      (1) 

Here,  r  is the density function, which represents an 

atomic pair correlation function. The average 

coordination number, N, in a spherical shell between  
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Fig. 5. Radial distribution functions of the studied Ga-Ge-Te 

glasses: a – Ge19Te81 and b – Ga7.9Ge11.5Te80.6. 
 

 

the radii r1 and r2 around any given atom can be 

calculated as the number of atoms in the area between r0 

and r, where r0 is the first minimum of  rr  24 . r0 is the 

lower limit of r, below which  r  is equal to zero. The 

position of the first peak in radial distribution function 

gives the nearest-neighbour bond length r1, and similarly, 

the position of the second peak gives the next neighbour 

distance r2. The RDF yields only a limited amount of 

information, restricted essentially to the local structure 

around a given atom, i.e. the bond lengths and bond 

angles. Knowledge of both the bond lengths r1 and r2 

yield the value of the bond angle θ given by [24]: 

 12

1 2sin2 rr  
.      (2) 

The experimental X-ray diffraction patterns were 

used for calculating the radial distribution functions 

(Fig. 5). 

The short-range parameters are: number of the 

nearest neighboring atoms (coordination number), their 

type, the distance from them to the central atom (the 

radius r1 of the first coordination sphere), and angular 

distribution of the atoms with respect to the central atom,  
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Fig. 6. Raman spectra of the Ga-Ge-Te glasses: 1 – Ge19Te81 and 

2 – Ga7.9Ge11.5Te80.6. For visual clarity, the second spectrum 

was shifted up by 10 arb. un. along the ordinate axis. The main 

bands are located near 88…90, 115…118, and 137…138 cm–1. 

which is determined by the chemical bond angles 

(valence angles φ). Such a definition limits short-range 

order to the first coordination sphere. At the same time, 

the short-range parameters define not only the first, but 

also, at least partially, the second coordination sphere. As 

can be seem from the expression (2), the radius of the 

second coordination sphere r2 is defined by the radius of 

the first coordination sphere and the valence angle. 

Raman and IR spectroscopy are widely used to 

study properties of functional materials [25–27]. Raman 

spectra of the studied Ga-Ge-Te glasses (Fig. 6) were 

measured at room temperature in the spectral range from 

50 to 400 cm–1 by using a FRA-106 Raman attachment to 

Bruker IFS 88 applying a diode pump Nd:YAG laser of 

ca. 100 mW power and using a liquid nitrogen-cooled Ge 

detector with the resolution set to 1 cm–1 with 256 scans 

collected in each experiment. As reflected in Fig. 6, the 

main bands in the Raman spectra are located near 

88…90, 115…118, and 137…138 cm–1. 

3. Results and discussion 

The radial distribution functions (Fig. 5) obtained using 

the experimental X-ray diffraction patterns (Fig. 4) have 

provided the values of the nearest-neighbour bond length 

r1 and second neighbour bond length r2 (see Table 1). 

Similar r1 values were observed for the Ga-Ge-Te glasses 

of different compositions known from literature. The 

partial distribution functions (PDFs) for the Ga-Te, Ge-

Te, and Te-Te in glassy Ga11Ge11Te78 obtained in [28] 

had the following maxima (first PDF maxima):  

Ga-Te (2.63 Å), Ge-Te (2.65 Å), and Te-Te (2.83 Å).  

A strong second nearest-neighbour peak at 4.26 Å was 

the most pronounced feature of this Ga-Ge-Te 

composition. It was also noted that the well-defined PDF 

minima indicate that the mentioned bonds result from 

tetrahedral configurations around Ga and Ge, Ga-Ga,  

Ga-Ge, and Ge-Ge “wrong bonds” are not favored, and 

both Ga and Ge atoms have near four-fold coordination. 

For Ga11.7Ge14.1Te74.2 glass, the r2 value of 4.27 Å was 

obtained in [23]. For our studied compositions, we 

obtained 4.31 and 4.44 Å for r2 (Table 1). In case of 

experimental determination of the structure of Ge-Ga-Te 

glasses, the main difficulty is that Ga and Ge have 

similar scattering properties both for neutrons and X-rays 

(ZGe = 32, ZGa = 31, bGe= 8.185 fm, bGa = 7.288 fm, 

where Z is the atomic number and b is the coherent 

neutron scattering length, respectively) [28]. The mean 

Ga-Te nearest-neighbour distance is between the Ge-Te 

and Te-Te bond lengths [29]. Therefore, another problem 

arises, namely sensitivity of the peak parameters  

 

 
Table 1. Short-range parameters of the Ga-Ge-Te glasses. 

Composition r1 r2 r2 /r1 θ 

Ge19Te81 2.65 4.31 1.63 108 

Ga7.9Ge11.5Te80.6 2.65 4.44 1.68 114 

Ga11.7Ge14.1Te74.2 [23] 2.67 4.27 1.63 106 
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to the ratio between the overlapping peaks. In order to 

obtain reliable information, it is necessary to study a 

concentration series because the uncertainty in the 

structural parameters for a single composition is 

relatively large. On the other hand, the main problem for 

a composition series is that the glassy domain in the  

Ga-Ge-Te system is limited to a small region (Fig. 2) and 

we have a small range of the concentration change. 

According to [28], the Ge-Te bond lengths for 

Ge7.5Ga7.5Te85, Ge12.5Ga12.5Te75 and Ge14.3Ga14.3Te71.4 

glasses are around 2.60 Å, while the Ga-Te bond length 

is 2.62…2.63  Å. The Ge-Te and Ga-Te bond lengths for 

Ge10Ga10Te80 are 2.64 Å. The nearest-neighbour 

distances for the Ge-Ga-Te glasses rGe-Te – 2.60…2.63 Å 

were estimated in [30]. The value of the Ge-Te bond 

length of 2.59 Å in the Ge15Ga10Te75 glass is given in 

[29]. Experimental studies of the local order in binary 

Ge-Te glasses provide similar values of the Ge-Te bond 

lengths of 2.58…2.61 Å as obtained by combining dif-

fraction and Extended X-ray Absorption Fine Structure 

(EXAFS) and Reverse Monte Carlo simulation (RMC) 

techniques [31]. The value rGe-Te = 2.6 Å is obtained by 

using anomalous X-ray scattering and RMC [32]. 

The rGaTe value (2.62…2.63 Å) found for the 

GexGaxTe100–2x glasses [28] is the same as that found 

experimentally for the Ge-Ga-Te glasses using EXAFS 

[30] and combination of experimental (diffraction, 

EXAFS) data with simulations (RMC and density 

functional theory) [33]. Somewhat longer Ga-Te bond 

length (2.67 Å) was found in [29] using first principles 

molecular dynamics simulations. 

The Te-Te distances reported in the literature have a 

broad distribution. For amorphous GexTe100–x, the value 

of 2.76 Å was measured by neutron diffraction [34],  

and the values of 2.77…2.82 Å by EXAFS [35]. The  

 

 

 

Te-Te distances around 2.79…2.80 Å were reported for 

the Ge-Ga-Te glasses and GexTe100–x films [36]. 

The r2 /r1 values of 1.63 and 1.68 (Table 1) are close 

to the typical respective value for a regular tetrahedron 

structure. The calculated values of the bond angle θ are 

also in good agreement with other published data on the 

Ga-Ge-Te alloys. 

Raman spectra 

The Raman spectra of the studied Ge19Te81 and 

Ga7.9Ge11.5Te80.6 glasses (Fig. 6) have the main bands at 

88, 118 and 138 cm–1. Assignment of particular bands 

detected in the Raman spectra of the Ga-Ge-Te, Ge-Te, 

Ga-Te, and Te samples known from literature is 

presented in Table 2 [23]. 

The data presented in Table 2 show that for Te-Te, 

Ge-Te, and Ga-Te bonds, stretching vibrational frequencies 

are similar and, hence, the interpretation of the Raman 

spectra of Ga-Ge-Te glasses is not straightforward. The 

band at 88 cm−1 [37–41] in the spectrum is attributed in 

the literature to the oscillation modes of GeTe or trigonal 

Te. The main vibrational mode (symmetric breathing or 

stretching mode) of the GaTe4/2 tetrahedra strongly 

overlaps with the corresponding band of the GeTe4/2 

tetrahedra due to the similar bond strengths of Ga-Te and 

Ge-Te bonds and similar atomic masses [33, 43]. The 

bending modes of GaTe4/2 and GeTe4/2 tetrahedra close to 

92 cm−1 [38, 41], the tensile modes of tetrahedral units 

GaTe4/2 and GeTe4/2 in the region of 115 to 125 cm−1 [33, 

43], and the oscillatory modes of tetrahedra GaTe4/2 at 

124…135 cm−1 are observed. The peak at 140 cm−1 

corresponds to the oscillatory modes of Te-Te [22]. The 

observed bands in the Raman scattering spectra of the 

Ga-Ge-Te alloys show that such glasses contain different 

nanophases. 

Table 2. Assignment of particular bands detected in the Raman spectra of Ga-Ge-Te, Ge-Te, Ga-Te, Te samples [23]. 

Wavenumber, cm–1 Assignment References 

88 
GeTe vibration modes  [37–41] 

Trigonal Te [42] 

92 Bending modes of GeTe4 (GaTe4) tetrahedral units [38, 41] 

104 Te modes [42] 

109 Symmetric Ga-Te breathing mode [22] 

115…125 Stretching mode of [GeTe4], [GaTe4] tetrahedral units [33, 43] 

120  Te-Te bonds [44] 

121 A1 mode of GeTe4 tetrahedral unit [45] 

124…135 
Corner-sharing (CS) or edge-sharing (ES) GaTe4 tetrahedra 

breathing modes 
[22] 

141 Crystalline Te phase  [43, 46–48] 

141 Te-Te bonds [44] 

150…155 Te-Te vibration bonds  [39, 46] 

156 Te-Te stretching modes [22] 

160 Ge-Te vibration modes [37–40] 
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Fig. 7. Deconvolution of the Raman spectrum of the Ge19Te81 

glass. 
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Fig. 8. Deconvolution of the Raman spectrum of the 

Ga7.9Ge11.5Te80.6 glass. 
 

 

The deconvolution of the Raman spectra of the 

studied Ga-Ge-Te glasses is shown in Figs 7 and 8. It can 

be seen from these figures that the spectra can be 

described in terms of vibrational modes of Ga-Te and 

Ge-Te glasses and films. 

4.  Conclusions 

In this paper, amorphous Ge19Te81, and Ga7.9Ge11.5Te80.6 

alloys have been studied using X-ray diffraction and 

Raman spectroscopy. The experimental X-ray diffraction 

patterns confirmed amorphous nature of the obtained 

alloys. They were used for calculating radial distribution 

functions, which gave the positions of the nearest-

neighbour peak r1 = 2.65 Å and second nearest-

neighbour peak r2 = 4.31 and 4.44 Å. The obtained r1 

value has a good agreement with the known from the 

literature Ge-Te and Ga-Te bonds lengths. Similar r1 

values were also observed for the Ga-Ge-Te glasses of 

other compositions. The values of the ratio r2 /r1 of 1.63 

and 1.68 are close to the typical value for a regular 

tetrahedron structure. The observed bands in the Raman 

spectra of the studied Ga-Ge-Te samples show that such 

glass contains different nanophases. These bands may be 

explained in terms of the vibrational modes of Ga-Te and 

Ge-Te binary glasses and films. 
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Дослідження склоподібних сплавів Ga-Ge-Te за допомогою рентгенівської дифракції та спектроскопії 

комбінаційного розсіювання світла 

A.В. Стронський, К.В. Шпортько, Г.К. Кочубей, M.В. Попович, A.A. Lotnyk 

Анотація. Структуру та вібраційні властивості склоподібних сплавів Ge19Te81 та Ga7.9Ge11.5Te80.6 вивчено за 

допомогою рентгенівської дифракції та спектроскопії комбінаційного розсіювання світла. Аморфний характер 

отриманих сплавів підтверджено експериментальними рентгенівськими дифракційними картинами, які були 

використані для розрахунків радіальних функцій розподілу, що дали положення найближчого сусіднього піка 

r1 – 2,65 Å і другого найближчого сусіднього піка r2 – 4,31 і 4,44 Å. Отримані значення r1 добре узгоджуються з 

відомими з літератури для довжин зв’язків Ge-Te і Ga-Te, аналогічні значення r1 спостерігалися для стекол  

Ga-Ge-Te інших складів. Значення співвідношення r2 /r1 1,63 і 1,68 близькі до типового значення для правильної 

структури тетраедра. Спостережувані смуги в спектрах комбінаційного розсіювання світла вивчених зразків 

Ga-Ge-Te показують, що такі скла містять різні нанофази і можуть бути пояснені в термінах коливальних мод 

бінарних стекол та плівок Ga-Te і Ge-Te.  

 

Ключові слова: рентгенівська дифракція, спектроскопія комбінаційного розсіювання світла, склоподібні 

сплави Ga-Ge-Te. 
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