Semiconductor Physics, Quantum Electronics and Optoelectronics, 2 (4) P. 046-050 (1999).
References
1. D.J. Bergman, Analytical properties of the complex dielectric constant of a composite medium with application to the derivations of rigorous bounds and to percolation problems, in: Electrical Transport and Optical Properties of Inhomogeneous Media, AIP Conf. Proc. No 40, Eds. J.C. Garland and D.B. Tanner, pp.46-61, AIP, New York (1978). https://doi.org/10.1063/1.31177
2. D.J. Bergman, The dielectric constants of a composite material - a problem in classical physics // Phys. Rep. C, 43(9), pp.377-407 (1978). https://doi.org/10.1016/0370-1573(78)90009-1
3. J. Korringa, The influence of pore geometry on the dielectric dispersion of clean sandstones // Geophysics 49(10), pp.1760-1762 (1984). https://doi.org/10.1190/1.1441583
4. D. Stroud, G.W. Milton and B.R. De, Analytical model for the dielectric response of brine-saturated rocks // Phys. Rev. B 34(8),pp.5145-5153 (1986). https://doi.org/10.1103/PhysRevB.34.5145
5. K. Ghosh and R. Fuchs, Critical behavior in the dielectric properties of random self-similar composites // Phys. Rev B 44(14),pp.7330-7343 (1991). https://doi.org/10.1103/PhysRevB.44.7330
7. R. Fuchs and F. Claro, Spectral representation for the polarizability of a collection of dielectric spheres // Phys. Rev. B 39(6), pp.3875-3878 (1989). https://doi.org/10.1103/PhysRevB.39.3875
8. F. Claro and R. Fuchs, Collective surface modes in a fractal cluster of spheres // Phys. Rev. B 44(9), pp.4109-4116 (1991). https://doi.org/10.1103/PhysRevB.44.4109
10. R. Stognienko, Th. Henning and V. Ossenkopf, Optical properties of coagulated particles // Astron. Astrophys. 296, pp.797-809 (1995).
11. R. Fuchs, R.G. Barrera and G.L Carrillo, Spectral representations of the electron energy loss in composite media // Phys. Rev. B 54(18), pp.12824-12834 (1996). https://doi.org/10.1103/PhysRevB.54.12824
12. A.G. Belous, A.V. Goncharenko, V.R. Romaniuk and E.F. Venger, Low-frequency dielectric function of close-packed composites // Proc. SPIE 2863, pp.141-151 (1996). https://doi.org/10.1117/12.256217
13. A.R. Day and M.F. Thorpe, The spectral function of composites: the inverse problem // J. Phys.: Condens. Matter 11(12), pp.2551-2568 (1999). https://doi.org/10.1088/0953-8984/11/12/010
15. J. Monecke, Microstructure dependence of material properties of composites // Phys. stat. sol. (b) 154, pp.805-813 (1989). https://doi.org/10.1002/pssb.2221540239
16. J. Monecke, Bergman spectral representation of a simple expression for the dielectric response of a symmetric two-component composite // J. Phys.: Condens. Matter 6, pp.907-912 (1994). https://doi.org/10.1088/0953-8984/6/4/010
17. Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase material // J. Appl. Phys. 33(10), pp.3125-3131 (1962). https://doi.org/10.1063/1.1728579
18. D.J. Bergman, Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material // Phys. Rev. Lett. 44(19), pp.1285-1287 (1980). https://doi.org/10.1103/PhysRevLett.44.1285
19. G.W. Milton, Bounds on the complex dielectric constant of a composite material // Appl. Phys. Lett. 37(3), pp.300-302(1980). https://doi.org/10.1063/1.91895
20. D.J. Bergman, Rigorous bounds for the complex dielectric constants of a two-component composite // Ann. Phys. 138(1),pp.78-114 (1982). https://doi.org/10.1016/0003-4916(82)90176-2
21. L.D. Landau and E.M. Lifshitz. Electrodynamics of Continuous Media, Nauka, Moscow, 1982 (in Russian).
22. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. // Ann. Phys. 24(8),pp.636-679 (1935). https://doi.org/10.1002/andp.19354160705
23. A.F. Mayadas, M. Shatzkes and J.F. Janak, Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces // Appl. Phys. Lett. 14(11), pp.345-347 (1969). https://doi.org/10.1063/1.1652680
24. A.F. Mayadas and M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces // Phys. Rev. B 1(4), pp.1382-1389 (1970). https://doi.org/10.1103/PhysRevB.1.1382
25. V.B. Sandomirsky, Quantum-size effect in a semimetal film // ZhETP 25(1), pp.162-166 (1967) (in Russian).
26. M. Mudrik, S.S. Cohen and N. Croitoru, Electron conductivity of very thin metal films // Thin Solid Films 226 (1), pp.140-143(1993). https://doi.org/10.1016/0040-6090(93)90219-F