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Abstract. The difference harmonic generation in an asymmetric quantum well based on AISb/
InSb heterostructures has been calculated. The intersubband electron spin-flip transitions are
analyzed in the framework of the three-band Kane model. Numerical results for the spectral
dependencies of a nonlinear susceptibility under of a double resonance conditions for CO,

laser have been obtained.
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1.Introduction

Currently, the nonlinear effects in low-dimensional struc-
tures are studied intensively. There are «up-conversion»
(generation of the second [1] and higher order harmonics
[2]) and «down-conversion» (difference harmonic gen-
eration [3]) processes among the basic directions both
experimental, and theoretical researches of nonlinear
effects, which are used mainly for generation of far infra-
red radiation. However, these works are devoted to the
intersubband resonant transitions in the quantum wells
(QW), which are perturbed by perpendicular to the 2D-
plane component of an electrical field. Contrary to such
transitions without change of the electron spin, the dif-
ference harmonic generation in an asymmetric hetero-
structures with non-degenerated by spin energy spectrum,
where in-plane electrical field perturbs spin-flip electron
transitions (the combined transitions [4]), has been con-
sidered in this paper.

The mechanism of spin-flip transitions was consid-
ered more than twenty years ago, at the research of inver-
sion layers of a narrow-gap materials [5]. The active study
of a narrow-gap QW based on InAs with appreciable a
spin-splitting of an energy spectrum [6], which will be
carried out recently, stimulates consideration of the lin-
ear and nonlinear responses in such structures at the ac-
count of the combined transitions. Such spin-splitting en-
ergy spectrum appears both due to the asymmetry of lim-
iting potential [7,8] and due to the asymmetry of bound-
ary conditions at the heterojunction [8—11] and is de-

scribed by linear to the electronic momentum p of the phe-
nomenological contribution into the Hamiltonian [12].

Below, the difference harmonic generation in an asym-
metric QW based on InAs is analyzed. Analysis is based
on the three-band Kane model with a homogeneous elec-
trical field, which is simply described by in-well poten-
tial. The influence of collisions is phenomenologically
taken into account without the exchange renormalization
of an energy spectrum.

2. Second order response

The basic expression for third order tensor of a nonlinear
susceptibility that describe the difference harmonic gen-
eration has a form [13]:
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Here, used is the basis of an eigenstate problem h‘v> =
=g, |V> , where h is the Hamiltonian of Kane’s model,
|v> and &, arean eigenvector and an energy for v state;
wyand w, are the frequencies of external laser pump
(Aw=w; —wy), |2 is the normalization area, f, isthe
distribution function over v ! state (a zero-temperature
condition has been used for numerical estimations, so
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that f, =0(¢g —&,), where &g is the Fermi energy).
Like Eq. (1) the following factor was introduced
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with phenomenologically introduced the broadening en-
ergy, A, which independent of the quantum numbers; a, 3
and y are the Cartesian coordinate indexes.

The heterojunction AlISb-InAs is characterized by big
break of the c-band, that lead to strong electron localiza-
tion inside QW. Therefore, for the bottom quantum lev-
els, it is possible to neglect the penetration of the wave
function into the barrier range (the approximation of in-
definite barriers).

The stationary electronic states in a narrow-gap he-
terostructures are described by the three-band Kane Ham-
iltonian [14]. In the assumption of the small contribution
from another bands, and also, that inverse heavy hole
effective mass is equal to zero, Kane’s Hamiltonian in-
side the well range can be written as

+(Vp) 3)

Here p is the kinematics momentum (in the pz represen-
tation p = {p pz} where p is the 2D-momentum, p, is
the operator of momentum along OZ); £, is the diago-
nal matrix of the energy extrema (€, £, and &, are the
extrema of the electrons, heavy and light holes, accord-
ingly) and V is the matrix elements of interband velocity,
which described by the Hermitian 6x6 matrix, with non-
zero elements
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where 2”1s the characteristic interband velocity for Kane’s
model, and the wave function is represented by six-rows
column-matrix with components lﬂ[()lz_G) . For simplicity
sake we have neglected the strain effect due to lattice

Here we introduce P = p, +ipy, where py and py
are the components of a 2D-vector p. For determination
of electronic states in ¢-band, we except the components
of wave function of a v-band l,US_G) from the eigenstate
problem (5), so that we obtain the effective Shrodinger
equation for the spinor of a c-band W, with components

‘,U(lz)-

B 2 1, .

g’:cz_s"'%"'pzﬁpz"'vz[px“]gypz=O
z 7z

where ¢ is the vector made on Pauli matrixes, the last
member in Eq. (6) describes spin-orbit interaction for 2D-
electrons. Besides, we have introduced in Eq. (6), depend-
ent on z effective mass, m,, and characteristic «spin» ve-
locity, v,, directed along the growth axis (OZ), in ac-
cordance to ratios:
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where m= 4222 / (389) is the bulk effective mass, &4 is
the gap energy for InAs. The energy extrema of ¢- and v-
bands in QW (see the band diagram in Fig. 1) have the
following form

Ez=Uz; &, =—€¢+tU,, ()

here U, is the in-well potential, for numerical estima-
tions presented below, we determine U , for undoped QW,
as U, =|gFgz, where Fp is the external transverse ho-
mogeneous electrical field (for strong doped structures,
Fwill be introduced as an average mean of a self-con-
sistent field).

We consider weak electric fields. It means that , then
€9 >>U;, Eq. (6) should be written as
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Here the «effective mass» and characteristic «spin»
velocity (4) depend on energy of the quantum levels:
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mismatch, and use &, =€y, =&, then after substitu- —mh + - le| Foh 10
tion Eq. (4) into Eq. (3), the eigenstate problem takes the Me m(\l g/ ¢g ) oV 4me (5 Iy / € F (10)
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Fig. 1. a) The schematic band diagram for AlSb-InAs-AlSb quantum well;
b) 2D electrons dispersion law for heterostructure in a homogeneous transverse electrical field F (hw; and hw, are frequencies of of

pumping)

Separating variables in the Shroedinger Eq. (9) and
using unitary transformation [15] for diagonalizing the
spin-orbit interaction term in Eq. (9), we finally obtain
for c-band spinor:

Vo=t

where ¢, is the eigenfunction for the eigenstate problem

(11)

without spin-orbital interaction: (ﬁzz/(ngn)+

lelFg Z}ﬁ nz = Endnz » Where &, is the energy of quantum
levels (in our case we consider levels with n = 0,1 only),
|G> — spin functions (5Z|0> = U|U>, where o =#+1).

Taking into account Eq. (11), the energy dispersion law
takes a form:

+ +0Vnp9
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where the effective mass and the characteristic «spin»
velocity (10) are determined by meaning of the quantum
level energy €, (so that mg =My and Ve, =V,).

36

Using spinor function (11) and taking into account a
component of wave function of v-band wgi‘e) (5), the
undiagonal matrix elements of the velocity operator (2)

take a form:
" pL,
<On[VX,Y|nIG _UQB o EWT % nn' napxy
(13)
. PlO1 1
(o), =000 5 (14)
n n'

where PnErll = <n| f)z|n'> is the matrix elements of the op-
erator of transverse to QW plane momentum (for unlim-
ited rectangle QW, we can estimate Plo as 8in/(3d)).
The matrix elements of longitudinal velocity (13) are de-
termined by components of 2D-vector p, then due to sym-
metry, non-zero components of a nonlinear susceptibil-
ity will be X 700 » Xaza and Xqqz only, here ais a projec-
tion to any in-plane axis. The matrix elements of trans-
verse velocity describe the transitions between different
quantum levels without spin-flip process only.

Usmg a double resonance condmon when
hoy o = 51p Eop and iAw = Snp 5np ,after substltunon
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of matrix elements (13,14) into Eq. (1) and simple, but
cumbersome transformations, we obtain:
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here introduced V2 = Plgpoml(]/moz —l/rrhz) , Yus=
=1/my -1my , and J¢ = As — (hw, +how, )/2 is the detu-
ning energy, and A& = & - £y; 0€ = hiw, — A€ is the en-
ergy distance between quantum levels. Besides, in Eq.
(15) we consider occupied spin-splitted bottom levels only,
and the summation on all 2D-momenta is replaced by

integration. Moreover, Xgzq ((01,02) = ~Xqaz (wz,wl)* ,
and Xzq0 << Xaaz>Xaaz» DECAUSE X 744 do not satisfy

double resonance conditions.
Finally, after integration, we rewrite Eq. (15) as:
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Here pg =,/2mpeg , and the introduced integral
function has a form
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Just after integration of the function (17), without non-
resonant terms, we can rewrite (17) as

X/ 1 +(ogVg — 01V )X = e —hAw/[2=i1>
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Fig. 2. Spectral dependence ‘Xaaz‘ versus detuning energy O€&
and difference frequency AAw (A = 0.1 meV).

3. Numerical estimation

The numerical estimations were obtained for AISb-InAs-
AlISb QW, with 15 nm well widths. Other parameters used
in the calculation are standard for bulk InAs: the gap
energy is £, = 0.5eV, the effective massis m= 0. 022me
(mg is the fgree electron mass). These parameters give us
distance between quantum levels of the order of
Ag =140meV .

The spectral dependencies of absolute values |Xgqs|
versus a detuning energy o€ and energy of the difference
frequency /iAw at the broadening energy A =0.1meV
are presented in Fig. 2. From function (18) it follows that
double resonance conditions are satisfied when denomi-
nators in (18) are equal to zero, therefore, spectral de-
pendency has multi-peak structure (two parabolic curves
oe(hlr )Z with different sign at vy and v; in (18), where
O < pPg u) As we consider weak external electrical
fields (so that €, >>U,), then, for the external electrical
field F = 70kV/cm, the resonance at the difference fre-
quency arises at the following energies [hAw|=3meV,
7D =2meV and de=16meV , but these peaks are
merged due to the non-zero broadenmg energy. Such spec-
tral dependency at the broadening energy A = 0.5meV
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a
where we introduce p= pg —0gMyVg.
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[Xaez1,10cm Y V

Fig. 3. Spectral dependence ‘Xaaz‘ versus detuning energy O€
and difference frequency /iAw (A = 0.5 meV).

is presented in Fig. 3. We did not consider energy range
|hAw| < A ,because Eq. (1) is not satisfied, when the pump
photon energy is closed to the broadening energy.

The absolute value Xq,it’s real and imaginary parts
both as functions from detuning energy o€ at fixed dif-
ference photon energy #Aw =5meV and as functions
from difference photon energy 7#Aw at fixed energy of
pump photon %iw; =130meV corresponding to CO, la-
ser, are shown in Fig. 4 and Fig. 5 (with the broadening
energy A =0.5meV).

3.0

_IXaazl

- === |m Xaa:z

1 1
-5 0 5 10 15 20 25 30
de,meV

Fig. 4. The spectral dependence of absolute value, real and
image part of ‘Xcmz‘ versus to detuning energy O¢ at fixed differ-
ence frequency photon energy ZAw = 5 meV.
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Fig. 5. The spectral dependence of absolute value, real and
image part of ‘)(aaz‘ versus to differece energy hAw at fixed
pump photon energy #Aw; = 130 meV.

4. Conclusions

In this work based on the three-band Kane model, the
opportunity of application of the combined transitions
for the difference harmonic generation in an asymmetric
heterostructures with non-degenerated by spin energy
spectrum has been analyzed. The analysis showed that
such structures are possible to be used for effective trans-
formation Mid-IR radiation into THz radiation. How-
ever, the obtained value of a nonlinear susceptibility is
significant less than in tunnel-coupled and «step-like»
QW, but is commensurable with such value for QWs based
on thickness metal films [3].

Let’s consider of the basic approximation used in this
work. At calculations of the stationary states in InAs we
did not took into account the contribution from cubic on
p term (which is due to inversion asymmetry of bulk ma-
terial [16] formed QW, the contribution from such mem-
bers is discussed in [17], too). The experimental data for
various heterostructures based on InAs [18] clearly show
the dominant linear to p contribution of the terms in spin-
orbit interaction in narrow-gap heterostructures. The
relative value of the contributions from in-well potential
and potential jump in heterojunction experimentally was
not investigated, but theoretical estimations gave the iden-
tical order of these contributions [19]. Phenomeno-
logically introduced broadening energy is widely distrib-
uted and satisfies to the purpose for estimation of effi-
ciency of generation. The influence of electron-electron
interaction was not considered, because this influence is
negligible for InAs at weak 2D electron concentration
(around 400! cm™2).
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