Semiconductor Physics, Quantum Electronics & Optoelectronics. 2001. V. 4, N 2. P. 118-122.

PACS: 61.10.E, 61.72.D

X-ray characterization of ZnSe single crystals

doped with Mg

A.G. Fedorov, Yu.A. Zagoruiko, O.A. Fedorenko, N.O. Kovalenko

Institute for Single Crystals, National Academy of Sciences of Ukraine

60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract. Doping of cubic ZnSe with certain impurities like Mg or Mn during crystal growth
causes the increased contents of the hexagonal phase in the crystal or even the transformation
to hexagonal wurtzite modification that possess the anisothropy of properties. This opens
the possibility to design not only the passive optical elements of this material but provide
them with controlling or measuring functions. In the present work the structure evolution of
ZnSe single crystals due to the Mg doping of different concentration was examined using the
double crystal X-ray spectrometer.
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1. Introduction

From the point of its physical properties single crystal-
line ZnSe is one of the best choices for applications as IR
optical elements. Low temperature modification of pure
perfect zinc selenide has the cubic sphalerite structure
with isotropic physical properties. But doping with cer-
tain impurities during ZnSe crystal growth leads to in-
creased contents of the hexagonal phase in the crystal or
transformation to hexagonal wurtzite modification that
brings the anisothropy of properties. Arising birefrin-
gence allows to suggest the controlling or measuring ap-
plications for ZnSe construction elements. In present
work the structure evolution of ZnSe single crystals due
to the Mg doping of different concentration was exam-
ined using the double crystal X-ray spectrometer. ZnSe
single crystal was grown from melt in argon ambient.
Growth conditions provide the graded contents of Mg
impurity from 2 to 7% measured with electron-probe
microanalysis.

2. Background

The known peculiarity of ATIBVI crystals is the presence
of stacking faults and twins lying in one of {111} planes.
Density of these structure defects is dependent on the crys-
tal growth conditions and, especially, on the contents of
contaminations. To understand the influence of stacking

faults and twins on the diffraction pattern, some theoreti-
cal considerations are necessary. X-ray scattering in the
crystals liable to formation of stacking faults and twins
was examined in wide range of publications. We shall
use the conventional procedure based on the kinematical
approach to construct the total scattered amplitude by
summation on the elementary cells.

Pure perfect ZnSe crystal possess the cubic sphalerite
structure. Planar defects disposed in (111) planes may be
described as a shift of the next atomic plane for the case
of stacking fault or rotation on 180° around <111> di-
rection that creates the twin boundary between two parts
of such crystal. As we consider the sequence of close
packed planes in <111> direction and their shifts or ro-
tations in (111) plane, it is suitable to make use of hex-
agonal cell with @ and b axes lying in (111) cubic plane
and c axis normal to it. Herein after cubic indices will be
supplied with «c» sign and hexagonal with «#». Both
cells are shown in Fig. 1. In a perfect crystal this hexago-
nal cell consists of three successive layers of type A and
type B atoms and contains 3 pairs of A and B atoms per
cell. But for the crystal containing stacking faults and
twins disposed on arbitrary distances from one another,
the unit cell of one interplanar distance height is more
suitable. Thus, the summary scattered amplitude of per-
fect crystal is proportional to sum of phase shifts

G= z expind where 6 = ZITBE+2—k+ | Hsince follow-
= @ 3 0O
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Fig. 1. Sphalerite lattice and transition to hexagonal cell.

ing layer in ¢ direction is shifted on 1/3 and 2/3 of lattice
periods along a and b axes relative to previous. Presence
of the stacking fault causes additional shift along @ and
b. Supposing the most simple case of equidistant stacking
faults, it may be shown easily that now

t-1 N-1 Kk
G=Y epim3 Y expin(p +15) where § = o+ K|
m=0 n=0 B 3C

t is the quantity of layers between the stacking faults and
N is the quantity of stacking faults in crystal. Here

t-1
z expimd stands as a structure amplitude of the big
m=0
unit cell with dimension dr along ¢ axis, if d is the dis-
tance between layers along c.
Regarding the general case of randomly disposed
stacking faults, one can obtain [1]

1

= mr;expin(p expiz,d [1- expid(zpy — Z1)]

(M

Here n is the number of stacking fault, z, — number of
the plane where it appears.

Commonly probabilities of the stacking fault appear-
ance in some distances are assumed and the average val-
ues of products of the complex conjugated amplitudes for
their different pairs are derived [1-4]. Here another way
is accepted. Direct expression is used for the summary
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phase shift on the structure with randomly distributed
stacking faults or twin boundaries. Scattered intensity is
proportional to the product of complex conjugated am-
plitudes. Distribution of defects with specified average
distance and dispersion is created using the random
number generator. So the resulting calculated picture of
scattering is dependent on the following parameters: (a)
average distance between defects and (b) dispersion of
the distances.

Appointing t as the average distance between stack-
ing faults, z, =nt +At,,, At is the deviation from aver-
age space for n-th stacking fault, (1) is transformed to

1 . =
=—— \ exping expi(nt +At,)o{1-
1—expi6nzzo ping expi( n)
. - - 1
—-expid[(n+Dt + At —nt At ]} =———x
p [( ) n+l n]} 1—expi5

xY, expin(¢ + o) expiAt,do[1-expid (f +Atyq —At,)]
n=0
(@)

Multiplication of (2) to complex conjugated value
yields

. 1 N2 N1
GG :1—c056{l;) V:zwfos[(U—V)(¢+5f)+

(At —Aty,)S] ~cos[(u-v)($ +3t) +

+(Aty ~Atyyy ~1)0] ~cos[(U-v)(¢ + &) +

+ (T +Atyyg — Aty )d] +cos[(U-V)(p + ) + 3)
N-1

+ (Bt ~Atyy)0] + Z 1-cos(t + Aty — Aty )0}
u=0

Passing across the twin boundary lying, say, between
n+2 and n+3 layers gives the following consequence of
phase shifts
..expi(ng + my) + expi[(n+Dd + (m+ D] +
+expi[(n+2)¢ +(m+ 2] +expi[(n+3)¢ +
+(m+DY] ++expi[(n+4)p +my] +

+expi[(n+5)¢ + (m-2Dy] +... that gives the 180° rotated
or mirrorwise placed parts of structure; ¢ = 271 . In gen-
eral, supposing sections of structure in initial orientation
having #; thickness and opposite oriented sections (twins)
with ¢, thickness, we get the sum

G= ﬂl—explldtl +1—exp|'yt2 expidiy
Hl—exp|5 1-expiy
XZ(expiétlexpiytz)”
n=0

4)

where 0 =¢ +w,y =y —¢ and intensity for this struc-
ture is proportional to
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GO= El— cosdty L 1-cospty _
[j1-cosd  1-cosy
_ Y
2(1-cosd — cosy) + cos2¢ + cos2y
xl—cosN(&1+ Wo)
1-cos(dty +tp)

G

x 5
0

where

Y =1-cosdt — cosyt, +cos(dty — ) + cos(t, +9) +
+cosd(t; +1) +cosy(t, —1) —cos(dty + 2¢) —

— Cos(yt, +2¢) + COS(@y + Jtp) — COS(Bly + Yt + ) -
—cos(dty + Wty —y) +cos(dty + 1o +2¢) -

—C0Sd — Cosy + C0os2¢

Eq. (5) is suitable to calculate diffraction on the structure
containing ordered twins or polytypes. For example,
putting t; =, = 3 in (5) allows to simulate diffraction on
6H polytype; ¢; =3 and #, = 2 corresponds to 15R one. If
t1 = t, = 1 then this is perfect hexagonal 2H lattice. Trans-
formation of diffraction pattern calculated with Eq. (5)
at transition from pure hexagonal 2H structure to twinned
3C sphalerite structure through polytypes of different
magnitude is shown in Fig. 2. Reflection indices used of
conventional wurtzite 2-layer cell and differ from ac-
cepted 3-layer hexagonal cell shown in Fig. 1 by factor
of 2/3. The last curve in Fig. 2 denoted 100H represents
the diffraction pattern for sphalerite containing large
twinned blocks and consist of the set of usual cubic re-
flections and extra reflections that appears due to rota-
tion twins. This known result is illustrated with projec-
tion of the reciprocal lattice shown on Fig. 3. It is evident
from above that twins and polytypes may be detected ex-
amining the reciprocal space in directions set with 10/}, ,
20/, nodes bearing in mind that both projections on
(110) and (110). must be tested.

Fig. 2. Calculated set of 10/, type reflections at transition from
hexagonal 2H to sphalerite 3C twinned structure through
polytypes of different magnitude.
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Fig. 3. Section of sphalerite reciprocal lattice by (110)¢ 1 plane.
Conventionally perfect lattice is shown on the right half and
twinned on the left half. Empty circles represent extra nodes.

In general case the expression for scattered ampli-
tude at arbitrary distances between twin boundaries is
desirable. In this work it was found directly in a same
way for specified average value of inter-boundary dis-
tance and its dispersion. It is brought without cumber-
some derivation.

GGY=5 +S, +S;, where

N, NN,
1 N 2 5 2 772
= = J|—- S+ + —_
S 1_0035[2 Zcos 2] Z Zcos(a by)
1=0 u=0 v=u+1
—cos(a+b,) —cos(a +bg) +cos(a+by)]
v-1

v-1 v-1
a:VJZUthﬂ b1:5JZut2j by =5 3ty by=

j=u+l
v v
=0Vt by=0 St
J 4 2j

j=u+l

with condition: if v = u +1 then b, = 0;

N, NN,
1 N 2 "2 .
=——[—- ) cosptyi .+ cos(c+dy) -
S 1—cosy[2 Z Y2j+1 Z Z s(c+dy)
=0 u=0 v=u+l
—cos(c +dy) —cos(c +d3) +cos(c + dy)]

v-1 v-1

v
=5 Yty d1=yzt2j+1 d2=y ) tojs d3=
. 4 .

j=u+l j=u+l
v
Zt2j+l

j=u+l

\'
=y ) thjur dg=y

with condition: if v =u +1 then d, = 0;
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1
= X
2(1-cosy —cosd) + cos2¢ + cos2y

2 2
[> D cos(e +f;)-cos(e + fp) ~cos(e, + ;) +

u=0v=u
+cos(e, + f,) —cos(e + f; —y) +cos(eg + f, —y) +
+cos(e; + f; —y) —cos(e, + f, —y) —cos(g + f; +9) +
+cos(g + f, +0) +cos(e, + f; + ) —cos(e, + f, +0) +
+cos(g + fy +2¢) —cos(g + f, +2¢) -
—cos(e, + fy +2¢) +cos(e, + f, +29)]

\% Vv
e_L:5Zt21 92:6 ztzj
J=u

j:U+l
v-1 \Y
flzyzt2j+1 fzzyztzm (6)
J=u J=u

with condition: if u=v then e, = 0, f; = 0.

Last expression looks something bulky but advantaged
with easy programming.

Thus the expressions obtained allow to simulate dif-
fraction on the AlBV! structure containing arbitrary dis-
posed stacking faults — Eg. (3), polytypes — Eg. (5) and
twins on arbitrary distances — Eg. (6). Of course, equa-
tions for twins are more general, it is possible to calcu-
late diffraction on the structure with stacking faults us-
ing (5) or (6) assigning the unit thickness for each alter-
nate twin.

3. Experimental

For X-ray investigations the specimens of about 0.5 mm
dimension were picked from the parts of ZnSe crystal
with different contents of Mg. The reciprocal space of
the specimens was inspected searching 10/, or 20/, re-
flections in both projections mentioned above. Since the

Fig. 4. Experimental diffraction pattern (10/)h for 2.5% Mg con-
taining specimen (thin) and calculated one for 90 - layer twins
(bold).
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Fig. 5. Experimental diffraction pattern (20/)h for 4.5% Mg con-
taining specimen (thin) and calculated pattern for 16 - layer
twins (bold).

disposition of twins is connected with the direction of
crystal growth, twin extra reflections appeared only in
one of two orientations. The extra reflections confirming
the presence of twins were detected in all specimens of
this example of ZnSe crystal. Diffraction patterns of the
specimens with Mg concentration below about 3.5% ex-
hibit very weak additional peaks that appears between
main and extra reflections. Simulations show that it cor-
responds to twins more than 60 layers thick and picture
depends appreciably from the dispersion of twins dimen-
sions. Diffraction pattern for the specimen with 2.5% Mg
contents is shown in Fig. 4. Increase of Mg concentra-
tion to 4.5% leads to changes in diffraction pattern as
shown in Fig. 5. Numerical simulation prove the in-
creased extent of ordering and smaller thickness of twins.
The most remarkable effect of Mg doping was observed
at approximately 6.1% impurity concentration. Reflec-
tions inherent to sphalerite lattice entirely disappeared
and diffraction pattern becomes conformable to the hex-
agonal lattice with doubled period in ¢ axis direction.
Calculation shows a good agreement with diffraction on
4H polytype (Fig. 6). Further increase of Mg concentra-

a)

b) x 100
(004)c (331)c
| i N
20 25 3.0 35 20 |

Fig. 6. Calculated pattern for 4H polytype (a) and experimental
(20)h diffraction pattern for the specimen with 6.1% Mg concen-
tration (b). Indexes / corresponds to conventional hexagonal lat-
tice 2H. Strokes show positions of disappeared cubic reflections.
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tion leads to disappearance of such good ordering. Dif-
fraction shows only remaining large twins and develop-
ment of the block crystal structure.

Conclusions

It was shown that crystalline structure of ZnSe single crys-
tal is very sensitive to the Mg doping in the range 3 to
6%. Initial sphalerite lattice with comparatively large
twinned blocks gains more ordered and thin twins and
becomes closer to polytype modification simultaneously
with Mg concentration increase. The most pronounced
effect of Mg doping was observed at approximately 6%
of Mg. It was expressed in the emergence of well-ordered
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hexagonal structure with doubled elementary cell in ¢
direction that corresponds to 4H polytype.

References

1. A.L.Ustinov, X-ray diffraction on 2H-crystals containing sub-
traction stacking faults of I, type // Metallofizika 9(1), pp. 77-
83 (1987) [in Russian].

2. A.J.C.Wilson, X-ray optics, London (1949).

3. M.Cesari and G.Allegra, The Intensity of X-rays Diffracted
by Monodimensionally Disordered Structures // Acta
Crystallographica 23(2), pp. 200-205 (1967).

4. A.Yamamoto, Application of Modulated Structure Analysis
to Polytypes // Acta Crystallographica A37(6), pp. 838-842
(1981).

500, 4(2), 2001



