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1. Introduction

It is known that the atoms of transition metals generate
deep levels within the energy gap of II-VI, III-V semicon-
ductors [1, 2]. The statements related to the problem of
deep levels in wide-gap semiconductors doped with the
transition metal atoms of low concentration (x <0.01) can
be summarized as follows: 1) The transition metal atom oc-
curs as the substitution defect in the cationic sub-lattice of
semiconductor; i) Unfilled atomic d-orbital of transition el-
ements is occupied following the Hund’s rules for a free
atom and is clamped to the vacuum level of semiconductor
rather than to the top of the valence band or to the bottom
of the conduction band. The deep levels in semiconduc-
tors are generated following the scheme of resonant crystal
field or broken bonds [1]; iii) Peculiarities of electron spec-
tra in magnetically doped semiconductors can not be ex-
plained basing on the solution of two-band model in the
tight-binding approximation [1]. The latter problem being
essentially the many-body one requires taking into account,
along with the crystal field, the Coulomb coupling of elec-
trons and the covalence of binding between the transition
element atom and the matrix as well. In general, narrow-gap
magnetically doped semiconductors do not follow the
behavior of the wide-gap semiconductors containing mag-
netic atoms [1]. Nevertheless, one can assume that the atom
levels of transition elements are also clamped to the vacuum
level in narrow-gap semiconductors [3].

Traditionally, it has been considered that the microscopic
description of Mn effect in wide-gap semiconductors can
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be performed using the Vonsovskii Hamiltonian with two
exchange constants a and Sin the mean field approxima-
tion. Thus, one has in the case of exchange interaction
between the spin of conduction band electron and the lo-
calized magnetic moment of the Mn ion

Heexch = az (éia-)oo'aroaia' - C¥<Si >5.e’

whereas in the case of the valence band hole this coupling
takes the form [4-6]

Héen=BY (S0)aobioho - B(S 0"

Usually, the a, Bparameters being derived from mag-
neto-optical or magneto-transport experiments reveal a
strong scatter both by values and signs even for the most
investigated wide-gap semiconductors. Moreover, in the
case of narrow-gap semiconductors demonstrating the me-
tallic properties, it is problematically to determine these mi-
croscopic parameters from experiments [7, 8]. In the limiting
case of metal, there exists only one band and only one pa-
rameter remains to describe the exchange interaction be-
tween collectivized carriers and localized spins. Thus, the
problem becomes the Kondo problem. The magnetic prop-
erties of Mn doped semiconductors are predicted to be dia-
magnetic at high temperatures, whereas at low temperatures
the Van Fleck paramagnetism caused by the transition metal
ions is expected under such approach [2]. It should be no-
ticed that the Vonsovskii Hamiltonian, being widely used
for the description of the magnetic semiconductors [4], the
materials demonstrating the metal-insulator transition [9],
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and the magnets with the semi-metallic properties [10], is
valid in the case of diluted magnetic semiconductors under
the condition of randomly distributed transition ions over
the cationic sub-lattice of the semiconductors.

Recently, the Ga;_Mn,As and In;_,Mn,As semicon-
ductors with high molar percentage of Mn (x > 0.01) have
been studied [11, 12]. The growth conditions allow Mn ions
to be randomly distributed over the cationic sub-lattice and
MnAs clusters do not arise intside the bulk Ga;_,Mn,As
due to the condition of x < x; = 0.13, where x, is the per-
colation limit for the creation of the finite percolation clus-
ters in the face-centered cubic cationic sub-lattice. It has
been shown that these semiconductors turn out in the mag-
netically ordered state like the ferromagnetic phase at the
temperatures T < T, and in the magnetic field [11-13]. Such
state can be easily manipulated allowing the spintronic ap-
plication [14]. Changing the wide-gap semiconductors
Ga_ Mn,As by the narrow-gap In;_Mn,Sb compounds
possessing larger lattice constant it is possible to get the
homogeneous semiconductors of the higher Mn doping.
The In;_,Mn,Sb semiconductor with x = 0.02, 0.028 has
been successfully synthesized [15].

The ferromagnetic ordering in the A;_,Mn,B DMS at

X < X can not be referred to a typical phenomenon of mag-
netic systems. Indeed, it has been shown [16-18] that in
the DMS the double exchange is the mechanism responsi-
ble for the ferromagnetic ordering rather than the RKKY
mechanism in the case of the metallic conductivity, as it is
stated in Ref.[11,12]. In spite of low Mn concentrations
(X<Xc) in strongly diluted magnetic semiconductors
(SDMS), these latter belong to the magnetic systems, the
type of Heisenberg magnetic semiconductors (EuO, EusS,
EuSe, EuTe, Ca;_,La,MnO3) [4] or the Heusler alloys pos-
sessing the structure C1b (PtMnSb, NiMnSb, CrO,, MnSb,
MnAs) [19-21]. It is known that ferromagnetism and anti-
ferromagnetism coexist in the Heisenberg magnetic semi-
conductors [4] resulting in the inhomogeneous magnetic
ordering, which can explain a non-monotonic temperature
dependence of the resistance [4, 11, 12]. Thus, on the one
hand, the problem of metastable magnetic properties of DMS
arises. On the other hand, it is known that even the diamag-
netic properties of the narrow-gap DMS are inhomogene-
ous [22]. The departure from the Fermi-behavior of free elec-
trons is observed in the magnetic semiconductors of high
conductivity also [19]. This property is proved for the t —J
model serving an example of the strongly correlated elec-
tron system [23]. All the experimental findings mentioned
above are of great importance for understanding of SDMS
properties.

There exist various theoretical schemes in SDMS
study. One of them resembles the computer modeling for
strongly frustrated spin glasses [24, 25]. Such approach
is based on the random distribution of transition metal
over the cationic sub-lattice of the semiconductor and
predicts significant deviation from “3/2 law” for the tem-
perature dependence of magnetization, if the tempera-
ture tends to zero. The approximation of mean field or
the approximation of a virtual crystal is widely used [26,
27]. Here, after the configuration averaging in DMS the
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search of the electron Green’s functions reduces to the
similar problem of the magnetic semiconductor with the
mean splitting performed following the Bogolyubov-
Tyablikov procedure [28]. Both the disorder and the pos-
sibility of the inhomogeneous magnetism are ignored.
The contribution of the disorder can be taken into ac-
count using the technique of the coherent potential [29—
31]. This technique proved to be a powerful tool in the
study of magnetic systems of high conductivity; however
itis of importance to account correctly for the electron cor-
relations and the dynamic character of scattering. The dy-
namic mean field (DMF) technique [32] allows the investi-
gation of the strongly correlated systems and the SDMS as
well. This technique broadens the resources of the coher-
ent potential method [18, 33]. The standard technique of
the Fermi-systems is also used for the study of the corre-
lated carriers in SDMS [34, 35]. However, it is difficult
to solve the self-consistent problem for the magnetic sub-
system together with the problem of the electron-hole spec-
trum in the semiconductor.

The ab-initio calculations are considered to be of use
to get the information about the electron spectrum in the
A1 xMnBDMS[18, 20, 21]. Nevertheless, the uniqueness
of the results as well as their certainty has to be particularly
analyzed in such calculations. Therefore, the analytical
schemes like that [33] developed for the investigation of
the A;_xMn,B DMS with a metallic type conductivity are of
extreme importance. These materials are considered as an
example of strongly correlated electron systems [32] com-
bining the electrical and magnetic properties [11-18]. Sec-
tion II contains the Hamiltonian of A ;_yMn,B DMS and the
description of the coherent potential technique [33] allow-
ing the self-consistent approach to the solution of the prob-
lem outlined above. In order to take into account the spin-
exchange scattering of the electrons by the localized mag-
netic moment, it is proposed to project the Vonsovskii
Hamiltonian in its spin-polaron form [4] onto the effec-
tive impurity Anderson problem, and then to use the tech-
nique of the motion equations for finding the electron
propagators separating the irreducible parts of the Green
function (Section 3). The spin Green functions are deter-
mined to be used further to calculate temperature and
magnetic field dependences of the magnetization (Sec-
tion 4). The concluding remarks to the developed model
clarifying the behavior of DMS with the metallic conduc-
tivity are presented in Section V.

2. Spin-polaron Hamiltonian for the A;_Mn,B
semiconductors with the metallic conductivity

Following [33] we introduce the Hamiltonian like the
Vonsovskii Hamiltonian:

H=Hy +Hy +a (§j6)w,af[,am', N
(I

Hw =-t § ajyaj,;,  and @
(i.1).0
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where Hyy, is the Hamiltonian of free electrons in the
conduction band, H, describes the energy of localized
magnetic moments in the magnetic field, ¢ is the transfer
parameter defining the width W of the conduction band,
h=gugH ?, g is the gyro-magnetic factor, pzis the Bohr
magneton, and H is the external magnetic field effecting the
localized magnetic moment of Mn ion.

For A;_xMn,B DMS calculating their electron and
thermodynamic properties, it is necessary to take into
account the random distribution of Mn component over
AB sub-lattice, if X < X, . Therefore, besides thermo-dy-
namic averaging, the averaging over the configurations
has to be performed exploiting the cumulant expansions
[33]. The chaotic distribution of the magnetic compo-
nent also complicates the analysis of the atomic bound-
ary of the magnetic sub-system of the semiconductors.
The electron spin can not be considered as a true quan-
tum number, while due to the scattering of an electron by
the localized magnetic moment of the Mn ion the spin
can be changed depending on the sign of the parameter .

Let us exploit the coherent potential scheme basing on
the Hamiltonian (1) [33]:

1 1 1
< Gia (w)>=—) < G? () >=— — @
N2 Ngkﬂdyﬁ

Io@ =2 @]

=0 (w) =
_ (1-X)Dj5 (@) + xDfg" (@) ~ D{5 (@) Dig" (@) I («) - ©)
1- (1= DA (@) + XD (@) (@)

ke, 5

The Green function of all the crystal <Gia (a))> (Eqn. (4)) is
expressed through the microscopic Green function

<GE (w)> . The coherent potential J,; (w) is given by the

equation (5) in terms of the <Gia (w)> function and the self-

energy part averaged over the configurations ={ (w). In
its turn, the ={ (w) function (Eqn (6)) is defined by the
local scattenng of the electron spm at both the non-mag-
netic DI - (w) and magnetic DI " (w) atoms of the i-th lat-
tice site. Equations (4-6) have been derived averaging the
diagrams of the Hubbard- Iapproxmlatlon However the
explicit form of the local functions DI - (w) and DI o ()
can be found by projecting the Hamiltonian (1) onto the
effective Hamiltonian like to the Anderson type [33] follow-
ing the DMF scheme[32].

For A_4Mn,B DMS, theidea of the spin-polaron Hamil-
tonian [4] can be utilized provided for the existence of the
states with the parallel directions of the localized spin S
and the electron spin possessing the energy
gl =&4 —aS/2(pseudo-spin 1) and the anti-parallel spins
with theenergy £4 = &4 +a(S+1)/2 (pseudo-spin | ). Us-
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ing the spin operators S™~ and Sf the electron wave func-
tions [4] are introduced as follows:

Wim =Y (S5) = AL(S5)3(S5.S7)[0) ™
where
+ 2 1 H a.+ Si+ H
AL (SH) =—==0/S+Sp +1a’ + ——=——=[Jand
’ v2S+1lg ’ S+S% +1H

. 1 Hgrary S H
i- (Sio) = VSt -
e vas+lg e s

The 8(S5,S?) denotes the state of the magnetic sub-
system at the i-th site in the case of the electron presence,
S is the spin projection, if the electron is absent, S is
the spin projection, if the electron is present, and | 0> is the
ground state of the electron sub-system.

The wave functions (7) are the eigen-functions of the
exchange part of the Hamiltonian (1) and can be considered
as the wave functions of the atomic limit for the Vonsovskii
Hamiltonian [39]. These functions are suitable for the ex-
pansion of the wave function of the Hamiltonian (1), thus
allowing to turn to the spin-polaron limit of the Hamiltonian
(1) that can be written for the case of large S as follows
[4, 33]:

H=Hg+Hpop . ®
SAZn Dt(e aS/Z)Z ni(?:T +
' &)

+[egq +a(S+1)/2]z n® +Hy
i

HhOp:HtZ +HW:

/'S

:y%{[s+(SZ+S+A)/2+S S" ] |§)-+T |(E)Aa =l +

(S+ $Z+A/2)a(1)+ a®@ +

o=t 10=1

|.S+]‘+(S +S+A)/2+S S J |§)+i |+AJ LT
(S+1+3 /Z)a(2)+ @ 4

10=1| I+AO"J.

+ (s +S7/ Z)a(2)+ @

= |+AJ 1

10)

z D+ 52
+(S+1+S+A ) o= Heng= T

+ 2+ 5 a®+ 5@
-}-(S*'A S ) A= Aino= +S+ io=1 A+ag=t

_ gt g% 4@ ( _ ) @+ 4
Sa io=1 &4no=1 S-S &5 Qino= t
(1)+ (2) _ 2+ (l)
*Sisa &ig=1 &no=, S &= &ino= 1}+HW
_
T

Writing down the equations (8-10), it has been taken
into account that in case of the electron located at the site
of the magneticion in the lattice (1ndex 2 in the operators of
creation a(z) or annihilation aI p %)) its spin behaves itself
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as a pseudo-spin (localized magnetic moment + electron
spin), whereas in case of the electron located at the non-
magneticion site in the lattice (index 1 in the operators a,((lf) *

and a(l)) the pseudo-spin transforms into the electron spin,

which is reflected in the part H 2/s of the Hamiltonian (10).
In order to utilize the equations (4-6) determining the co-
herent potential, the Hamiltonian (8) has to be projected
onto the Hamiltonian of the Anderson type following the
procedure developed in Ref. [33, 42] and assuming that
the electron being in the conduction band moves over the
non-magneticions in the A ,Mn,B system with X <X .
Thus,

HW - HW :_Vz(a(l)flc +E|0 (1)+), (11)
where &7 and &, are the Fermi operators of the elec-
tron creation and annihilation, respectively, beyond the
i-th site with the spin 0. These operators are connected
with the coherent potential [33, 42] through the equation

Jg(w) =22 << &g | &y >> (12)

The commutation relations for the operators enter-
ing the Hamiltonians (8-11) are:

{31(2) a<2>+} 5,55 {a,(1> a(1>+} 5650

g %o’ gr'7jo

{a1(§)’a§10)+} 0, {va (L2)+} 0,

[s+? S'_J: 25 S*, [Si?SjZJ =35 §",
%(sti‘ +S7S)+(ST) =S(S+),

13)

If one assumes that the relations between the local
parts of the Green functions derived basing on the
Vonsovskii Hamiltonian (1) have the form of

|a(w) =< al(l) |a1(1)+ ) and

(14)
Diy"(w) =<<a [a)" >
the self-consistent scheme for finding the electron Green
functions built using the equations (4-6, 12, 14) becomes
completely closed.

Passing on to the great canonical distribution, the che-
mical potential i determined solely by the mean number
of the electrons n® at the non-magnetic site in case of the
A _xMn,B crystals with is defined traditionally through
relations

n® =3 nd =

R O [_ @) | A0+ L
_Z_J;Z_neﬁ(w_”)+l 2Im(<<aiy a5 " >>prie) 0>

a15)
n® = z n® =

P @) | A L
=3 [ G g M 188 )
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3. Formulation of the effective single node
electron task

Let us write the equations of motion for the operators a,(]" 2

using the effective Hamiltonian (8):

[a1(1) HJ En 611(1)+yg S+n, +S+A/2)a1+AU
+S+Aa1(f)A a} VEiO”

22, H
+y§ S+, +(§ 452, )2+ 5755 ] 2@, +

(84 —0a(S+0,)/2)al? + .

+(s+n, +57/2)al), +

- 2
( +OA_S ) (+)A -0 S a1+A a}
Thenotions N, ={0:0 =1;1: 0 =} areintroduced in the
commutation relations (13). The general expressions for the

Green functions (# =1) built on the A, B operators are as
follows

w<<A|B >>w:2i<{A, é}> +<< [A, |:|]| B>>,,

m

L 17
w<< Al é>>w:2_<{,&, é}>—<< A|[|_3,,|:|]>>w_

m

Using (17), the equations for the Green functions

< a(l) | a1)+ , << al(f) | a(1)+ >>, can be written as
(=£a) <83 187" >>,= <{a‘1’ a7} >

+y§<< (S+n, +$+A/2)al(+Ao_ [ >> +

{0+

+ y% << SjrAai(f)A’_a | -%)+ >>, - << E(l) |a'7

(w+oa(S+0,)/2) <<a? |a®* >> =yO§ << (S+0, +
ag al g
A

5+ 520 )12+ 75 )a%, [aD* 55, + ®
' gl« (S+M, +S7/2)a 183" >, +

A
-§%)alh o 187" >

a®, 18 »w] g
0

+<<(S3a
-<<§°

Since the Green functions are of the single node char-
acter onto the self-returning paths [23, 33], one can dis-
tinguish the irreducible parts from the self-energy parts
of the electron Green functions when constructing the
Dyson equations [39-42]. In order to perform this opera-
tion, the commutators (16) are rewritten as

(19)

1 _ 1) 1 @42 1
alg H‘] eadly +agaly +ajlal? + 2,
2 — 2 2) (1) 2) 4 (2 2
a7 H|=efa? +aal) +afdald) + 73
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where the coefficients a(%zz))o are determined from the

orthogonality conditions for the anti-commutators of the
electron operators and the irreducible parts Zi(f;z) at the
different lattice sites:

({a@:282 }) =0 and {4+, 202 }) =0.
12

Then the explicit expressions of the coefficients ai20
under the condition (20) are given by

al(},):o

(20)

E)

0{% =a1(§) =y(S+ny+<S*>/2),and @1

ald =y(S+n,+<S%>).

Here it is assumed that the magnetic ordering is homogene-
ous and does not depend on the lattice site,

(%) =(87) =(57). () =) =(5").

The equations of motion for each Green’s function
of the expression (18) with the right-side operator ai(g_) *can
be written using the second relation (17). Similar expres-
sions are written for determination of the functions
<<a® [a@* >>and <<a@ |a@* >>.

All found functions can be unified by the matrix form as
follows:

1 1
BO‘EA‘%(J) aé:;

E} E/Zn 0 E”
2 2
H —a() - —aéa) 1/2m )

H<< Z(l) |Z(1)+ S>> << Z(l) |Z(2)+
%< Z(Z) (1)+ >SS << Z|(0'2) |Z|(o'2)+ >>
-1

el @ o
H —a(z) w-eJ -al?

This can be rewritten in the form of matrix equation of
scattering:

22

Ga = GOO’ +GOO’ PO'GOO' ’ (24)
H 1/2m
O [P e
o loPydo gy
0  w-gp-al- @
- O w-eJ —a
where Gg,; = [ @ 20
0 e
Hw-&p- al(clj))(a) £q —a(z)) az)a(z)
a
O

JSS z®W 1 zO0% 5> << 702" 5>
o = (en) k< Z(z) |z >> << Z(z) 122" >>H
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The matrix equation of scattering (24) transforms into
the Dyson matrix equation

GO’ = GOO’ + GOO'M O'GO' s (29

where
i pirr & e Sirr
+rpirg pIT 4+

M o —irr If)cifrr (26)

The explicit form of the irreducible parts representing
the first order approximation for the (see Appendix) is given
by

irr << Z_(l) |Z(1)+ >>irr -
io

(s%)

VG ()7}

20 22 _ -0
SO (SIS AT, (577 + @)
+ % (570%)+2(s07 )02} - Iy (@) 2,
where
Al,v =<< 31(1) |a|(k)+ y» S=S+0,,and

k Ll ek
Of¢ = s{ A wren
~&pn _ ik H
(e 1)2njw+éh a)[ ZImAf““'f]s OE’
)

i <o Zi(g) | Zi%)+ S>> T Zi(clr) | Zi(02)+ >>IM = ‘Vzg{( S+

e e

Aé (-S~ < > <SZ> )AtlTZw_ <Sa —a>
(SoNs7Ne% o +(s7)(s )0t -0}

and

1
Al d
(w—sA—al(‘lj))(a)—e (2)) a(l)a(z) v 0
0
0,
1/2m 0
n, 2 O
w-£9 —q@ _ agaiy O
d 20 0 0O
W=Ep =047 0

and G

B<< a(l) | a(1)+ >> << a(l) | a|(2)+
k< a(z) %)Jr >> << .g) |a@* >>H
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" << Z{D |Z{* > = -y?§(S+2(s)+(s7)(S )+
+(s757%)+ ((<SZZ> (s >)/2+<szs"><s 7)+
(")) <"’S"><S S7DA
{5+ 5 (57) {57 2
(57° (57 WAty + (%) +(s )57+
(55 (557
O I C L CEME
55 )7
x(@E},,_Hel_ﬁ, (,) (<s"><5‘0>+<303‘0>) ol o}

Such general expressions of the irreducible parts are
hardly suitable for the analytical treatment, but allow the
perfect numerical analysis.

The irreducible electron functions (27-29) contain av-
erages of the localized magnetic moments like

(9).(57).(57). (55 ('), [55). o

Self-consistent finding of these averages is of impor-
tance for the correct solution of the sets (4-6) and (27-29),
and for the ascertainment of the phase transition nature
[11-15]in DMS [28]. Usually in the calculation of the elec-
tron spectrum of magnetic semiconductors, these averages
are taken as derivatives of the Brillouin function [31, 34, 35,
37], which casts doubt on the validity of the results. Here
we present the method to find such averages through the
spin Green functions << §" | § >>,, and << % | §* >>,
following the Bogolyubov-Tyablikov scheme.

. +(S+2 < >+

29

x0%2

4. Formulation of the effective
single node spin task

Let us write the equations of motion for the Bose-like spin
operators §% and §7 :

5= v@Z[s S0 57,52l a4

+ (2)+ 2+ (2)
+S S i—AL |1 S S a |+A¢ + (31)
2+ (2) (2)+ (2 D+ S, _ ,2+,0
+le (0@ a® -a@a@ +al* a@ -a@a0 |

_ @+ 30 _ 52+ DO+ 5 _ ;5D )]}
S (a‘—ma‘u |r a‘|+A¢+a"|—Arai¢ air a“|+A1 !
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)+ (2 2)+ 2

57 H = ons? oy B; 2 a2 a2l a2

2+ (1 1)+ 2 z (2)+ 2
+a fzm ) I R

(32)
2 2 z 2 2

-7 582 al) p +257 () a) -

(2)+ (2) (1)+ (2) (2)+ (1) ]

lT 1+Al —AT ll lT 1+Al

By analogy to the electron irreducible parts (19) de-
duced from the equations of motion (18) the irreducible
spin parts for the equations of motion (32) are introduced,

|5 1]=hs" + Bs" + pVs7 +¥ W and
[s.h]= s+ BP YO

From the requirement of equality of the averages taken

33)

for the commutators of the irreducible parts Y(J"2 and the
spin operators S%, S
s92]) =0 ma (s3] =0 5

one finds Bl(l'z) = Bél’z) =0
Then using the equations for the Bose-operators Aand B,
w<<A|B >>w:2i < [A, |§]> +<< [A, |:|]| B>>,,.
7T
. 1 [~ - T (35
w<<A|B >>w:2_ < [A, B]> -<<A| [B, H]>>w
7T
the equations of motion (33) can be written as follows:

(-h)<<S"|S >>,=2<F >+<<YP |5 >> .
(36)

W<<S | >>,=<§ >+<< Yi(z) S >>,-

Constructing the equations for searching the Green func-
tions << S | S§* >>,, and << § | §* >>,,, and perform-
ing the procedure (35) with these functions, one gets the

matrix equation
-h 0 H«Sfle»w <<Sl.+|Sl.Z>>w
0 w H<<S.Z|ST >>, <<S7|S7>>,
1 B2<S > -<S7 >B+

27‘[H<S > 0 37

ler <<Y(l) lY(1)+ >>|rr
Brr <<Y(2) lY(l)+ >>|rr

" o

where the notions are introduced as follows

irr <<Yi(1) |Yi(2)+ >>irrw
irr <<Yi(2) |Yi(2)+ >>irrw
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a= <S"|S >, <<§' S>>,
<SS >, <SS >>,

~ irr <<Yi(1) |Yi(l)+ >>irrw

- Eirr <<Yi(2) |Yi(1)+ >>irrw

1
- ODE<Sf>/n -<S’>/2m
@0 L@%Sp/zn 0
w

irr <<Yi(l) |Yi(2)+ >>me
irr <<Yi(2) |Yi(2)+ >>irer

FP<SZ> <S+>H
_10w-n w-hO
T onleg 0 (38)
271D<$ > 0 B
0 w O
<S*>/m -<§ >/2n
S >/2m 0
A, = 21

X
-nho<s <5 >

% 0 w <Si >
w-h? <S> 2(w-hlw<S?>

Let us write the matrix equation of scattering for the
spin Bose-like operators,

S=5 +SAVAS, . (39
Transform the equation (39) into the Dyson equation
S=S +5DS, (40)

with the mass operator in the form

|5 — Al—lirrY“irr Az + Al—lirrY‘irr AzéOAl—lirrY"irr Az + (41)

Using the technique described in Appendix, the explicit
form for the irreducible matrix elements of the spin part of
the Y can be presented as:

22 [

1) v (@ _ - -
™ ey @ |y @ >5im ) y{n gs" +<S" >S4+

+<S™ > AL (w)] E’uzl N - )(w)+nﬁ/\+: (w) +
—(e) —€p el—en
AT @A @4
d €A €
+4n? —ZZ+<S‘><S+> %f(w)+<sz> SHy+
42)

+ n22{4_

4<s >< >/\$$(w) +S12-
~<S > AL (w)+4<sz> S5} -n?<st>s%+
+4n$f{/\ZZ

‘! (w) + /\ZZ (w)}

+ 4{n12/\ZZ (@ n21/\ZZ @I
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5. Conclusions

The theoretical treatment of A;_Mn,B DMS basing on
the self-consistent analysis of the electron and magnetic
properties of DMS possessing the metallic type conduc-
tivity is developed. On the one hand, the chaotic distribu-
tion of Mn ions over the semiconductor lattice is taken
into account by building a coherent potential, on the other
hand, the local task of electron spin scattering by the
localized magnetic moment is solved exactly.

In our previous analysis [33], for the sake of simpli.
city, the transverse components of the S° have been ne-
glected when the Vonsovskii Hamiltonian was written in
the spin-polaron approximation (8, 9). In the case of

125



V.P. Bryksa et al.: Diluted magnetic A;_,MnB semiconductors

DMS, these components occur of importance, which can
be seen from the equations for the electron propagators.
Writing the Vonsovskii Hamiltonian in the spin-polaron
approximation we assumed that S value is a large number
(S > 1/2). Tt is seen from the self-energy electron parts
(27 29) that the genuine parameter of the model is the
t2/S parameter corresponding to the Hubbard model
and to the r — Jmodel [23] with the t2/S parameter. There
exists the peculiarity of the electron Green functions GOU
in the approximation of the atomic limit (24) for DMS in
comparison with the atomic limit for the magnetic semi-
conductors [38]. In DMS, the zero order Green function
contains the carrier transfer. It has been pointed out that
the more complicated averages of the spin operators have
to be calculated for correct finding the electron spectra
in magnetic semiconductors [28]. This statement is true
for the case of DMS, too. As far as all the experimental
studies of the temperature dependence of magnetization
are performed in magnetic field [11-18], the Hamilto-
nian (1) includes the term of interaction between the lo-
calized magnetic moments and external magnetic field.
The equations for the self-energy parts of the electron
(27-29) and the spin (42—44) Green functions reveal en-
tangled picture of the magnetic field participation rather
than simple Zeeman splitting. The substantial require-
ments of our scheme are the homogeneity of the magnetic
properties (22) and the single-node character of electron
and spin Green functions. Under violation of the first
requirement one can expect the phase layering [19, 23,
36], while breaking the second requirement leads to a
more complicated problem [32] that has not been solved
yet for the strongly correlated systems.

Appendix. Calculation of the irreducible
electron and spin parts by means of two-time
decoupling of the Green functions

In order to find the irreducible parts of the scattering matrix
P, the two-time decoupling of the Green functions is ex-
ploited. For example, let us consider the following term of
the matrix:

3 <<<1+—S+A) a® |
AL A"

1 2 i i
(W o Shaalty, > = AT
Since this term is diagonal at the lattice node, one can use
the spectral theorem for the Fermi-operators [38,41,42]:

Aﬂ_rr z ire << (1+ S+A) I(E)AT |

(A1)

@+ sm a@t >>I" =
dw' g e At ig
— [ — +1D) [ — X
& 27'[_I w—a)'(e )_.[o 27'[e (A2)
<(1+—S+A haiy, O+ g SM) ,(f)m>

126

The Bogolyubov-Tyablikov decoupling of the opera-
tors gives

<(1+—S+A)t 8, O+ ¢ SM) .+AT>~
(A3)

<<1+ S%a)(@ —m )>< a®r 0a). ).

While the localized magnetic moments do not interact
immediately, it appears that

Sia®=e"oglpdM0 =5ty (A9
Then one gets
A =3 {0 gg ) <<all 145 0 49

It is assumed that the system after the configuration
averaging becomes homogeneous one. Using this assump-

tion A" expression can be written as

A = 7+ 57 a7 5 h

For the irreducible Green functions like
M << (1+2—$+A) ff)m [S+an I(f)AJfT > due to rela-
tions
the more complicated result can be derived,
o Orog S Sha)al, 1Suaal, > =
(A.8)
=)o () B << a@ 192" 5> -0
VS d—[ 2im <<a® |a@* >> ., L %
2m ) w+h-w wme ~0§

Followmg such procedure for all the terms of irredu-
cible parts of the electron Green functions derived from
the equations of motion (18,19), we get expressions for the
scattering matrix P; (24) written in the equations (27-29).

Using the similar technique, the irreducible spin parts
entering into the equation (41) are determined. Basing
on the spectral theorem for the Bose operators, the irre-
ducible Green function is written as:

"

i — irr S_( 2+, @M+ (2))

S = z << 2 a” a|+AT+a ATaIT |
AR

S ((2) ©+ .0 <2>+) i

| a'|+A 1 +a’ ATa'M 2w

(A.9)
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L Bw -1 iw't (Z)a(l) +

ZA,,zn w- w( ).[2 < it A

40 (2)+)) (<2>+ M 0 (2))>
i—A"t m i z+A‘ —Ar lT :
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Then, performing the Bogolyubov-Tyablikov decoup-
ling, one receives:

- +
SO, g0 @) SE[ee 0
2 it 1+A i-A"t it 2 it i+A't
Iy @) ((2) O+ L (W) (2)+)
* ai—A Tt )> < it 1+A" ta, i—A"t (t)x
@, 0 )
(11 Ty T4y Yy )] (A.10)
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where the following relation is utilized:

B0 = D =0 D), Al
(1)+ — thO (1)+ itHy _ —ig4qt (1)+
g, (D= Gapr© 7€ T py

Finally, the irreducible spin part S takes the fol-
lowing form:
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By analogy, all other terms entering the irreducible
electron and spin Green functions can be calculated, if
the condition of independence of the averages on the site
number is preserved. Thus, combining the calculated
terms, the equations (27-29) and (42-44) are derived.

References

1. K.A. Kikoin and V. N. Fleurov, Transition Metal Impurities
in Semiconductors (World Scientific Publishing, Singapore)
(1994).

2. E.M. Omelyanovskii, V.I. Fistul, Defect of transition metal
ions in semiconductors, Moscow, “Metalurgija”, 1983 (in
Russian).

3. A. Mycielski, Fe-Based semimagnetic semiconductors // Physica
Polonica, A79, pp. 839-849, (1988).

4. E.L. Nagaev, Physics of magnetic semiconducting, Moscow,
“Nauka”, 1979 (in Russian).

5. A.K. Bhattacharjee, Interaction between band electrons and
transitions-metal ions in diluted magnetic semiconductors //
Phys. Rev. B9, 46, pp. 5266-5273 (1992).

6. Yu.G. Semenov and B.D. Shanina, Valence Band Electrons
in Semiconductors // Phys.stat.sol. (b), 104, pp. 631-639 (1981).

7. W. Hoerstel,W. Kraak, W.T. Masselink,Yu.l. Mazur, G.G. Ta-
rasov, A.E. Belyaev and E.V. Kuzmenko, Peculiarities of the
exchange interaction in narrow-gap Hg; , CdMn,Se //
Semicon. Sci. Technol., 14, pp. 820-828 (1999).

8. T. Hartmann, S. Ye, T. Henning, P. J. Klar, M. Lampalzer,
W. Stolz, and W. Heimbrodt, Magneto-Optical Spectroscopy
on (Ga,Mn)As Based Layers-Correlation Between the p-d
Exchange Integral and Doping // Journal of Superconduc-
tivity, 16, pp.423-426 (2003).

9. G.V. Loseva, S.G. Ovchinnikov, G.A. Petrakovskii, Metal-
isulator transition in sulphides of 3d-metals, Novosibirsk,
“Nauka”, 1983 (in Russian).

127



20.

21.

22

23.

24.

25.

V.P. Bryksa et al.: Diluted magnetic A;_,MnB semiconductors

. T. Moriya, Spin Fluctuations in itinerant electron magnetism,
(Springer-Verlag, Berlin) 1985.

. H. Ohno, Properties of ferromagnetic I1I-V semiconductors //

Journal of Magnetism and Magnetic Materials 200, pp. 110-
129 (1999).

. Y. Iye, A. Oiwa, A. Endo, S. Katsumoto, F. Matsukura, A.
Shen, H. Ohno, and H. Munekata, Metal-insulator transition
and magnetotransport in II1I-V compound diluted magnetic
semiconductors // Materials Science & Engineering B, 63,
pp- 88-95 (1999).

. T. Dietl, J. Cibert, P. Kossacki, D. Ferrand, S Tatarenko,
A. Wasiela Y. Merle d’Aubigne, F. Matsukura, N. Akiba,
and H. Ohno, Ferromagnetism induced by free carriers in p-
type structures of diluted magnetic semiconductors // Physica
E, 7, pp. 967-975 (2000).

. H. Ohno, F. Matsukura and Y. Ohno, Semiconductor Spin
Electronics // JSAP International, No.5, pp. 4-13 (2002).

. T. Wojtowicz, G. Cywicski, W.L. Lim, X. Liu, M. Dobro-
wolska, J.K. Furdyna, K.M. Yu, W. Walukiewicz, G.B. Kim,
M. Cheon, X. Chen, S.M. Wang, and H. Luo, In;_Mn,Sb — a
new narrow gap ferromagnetic semiconductor // Applied
Physics Letters, 82, pp.4310-4312 (2003).

. K. Hirakawa, S. Katsumoto, T. Hayashi, Y. Hashimoto, and
Y. Iye, Double-exchange-like interaction in Ga; \Mn4As in-
vestigated by infrared absorption spectroscopy // Phys. Rev.
B, 65, pp. 193312/1-4 (2002).

. E.J. Singley, R. Kawakami, D.D. Awscholom and D.N. Basov,
Infrared Probe of Itinerant Ferromagnetism in Ga;_ (Mn,As //
Phys. Rev. Lett., 29, pp. 097203/1-4 (2002).

. L. Craco, M.S. Laad and E. Muller-Hartmann, Ab initio descrip-
tion of the diluted magnetic semiconductor Ga;_yMnyAs:
ferromagnetism, electronic structure, and optical response //
Phys. Rev. B, 68, pp. 233310/1-4 (2003).

. V. Yu. Irkhin and M. 1. Katsnelson, Half-metallic ferromagnets

/I Physics- Uspekhi, 37, pp. 705-724 (1994).

B. Sanyal, L. Bergqvist and O. Eriksson, Ferromagnetic materi-

als in the zinc-blende structure // Phys. Rev. B, 68, pp. 54417/

1-7 (2003).

L.M. Sandratskii and P. Bruno, Electronic structure, exchange

interactions and Curie temperature in diluted III-V magnetic

semiconductors: (GaCr)As, (GaMn)As, (GaFe)As // Phys.

Rev. B 67, pp.214402/1-11 (2003).

. A.A. Abrikosov, Introduction to theory of metals, Moscow,

“Nauka”, 1987 (in Russian).

Yu.A. Izyumov, The t-J model for strongly correlated elec-

trons and high-Tc superconductors // Physics-Uspekhi, 40,

pp- 445-477 (1997).

M.P. Kennet, M. Berciu and R.N. Bhatt, Monte Carlo

simulations of an impurity-band model for I1I-V diluted mag-

netic semiconductors // Phys. Rev. B, 66, pp. 045207/1-16

(2002).

M. P. Kennett, M. Berciu, and R. N. Bhatt, Two-component

approach for thermodynamic properties in diluted magnetic

semiconductors // Phys. Rev. B, 65, pp.115308/1-11 (2002).

128

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Min-Fong Yang, Shih-Jye Sun, and Ming-Che Chang, Com-
ment on “Theory of Diluted Magnetic Semiconductor
Ferromagnetism”// Phys. Rev. Lett., 86, pp. 5636 (2001).
Shih-Jye Sun, Hsiu-Hau Lin, Diluted Magnetic Semicon-
ductor at Finite Temperatures // cond-mat/0303328, (2003).
W. Nolting, S. Rex and S. Mathi Jaya, Magnetism and elec-
tronic structure of a local moment ferromagnet // J. Phys.: C,
9, pp. 1301-1330 (1997).

M. Takahashi and K. Mitsui, Single-site approximation for
s-f-model in ferromagnetic semiconductors // Phys. Rev. B,
54, pp. 11298-11304 (1996).

M. Takahashi and K. Kubo, Coherent-potential approach to
magnetic and chemical disorder in diluted magnetic semi-
conductors // Phys. Rev. B, 60, pp. 15858-15864 (1999).

M. Takahashi and K. Kubo, Mechanism of carrier-induced
ferromagnetism in magnetic semiconductors // Phys. Rev. B,
66, pp. 153202/1-4 (2002).

A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions // Rev. Mod. Phy-
sics, 68, pp.13-125 (1996).

V.P. Bryksa, G.G. Tarasov, W.T. Masselink, W.Nolting, Yu.
I. Mazur and G. J. Salamo, Ferromagnetism induced in di-
luted A; \Mn4B semiconductors // Semiconductor Physics,
Quantum Electronics & Optoelectronics, 1(1), p. 43-51 (2004).
N. Lebedeva and P. Kuivalainen, Shift in the absorption
edge due to exchange interaction in ferromagnetic semi-
conductors // J. Phys.: Condens. Matter, 14, pp. 4491-4501
(2002).

V.A. Ivanov, P.M. Krstajic, F. M. Peeters, V.N. Fleurov, and
K. A. Kikoin, On the nature of ferromagnetism in diluted
magnetic semiconductors: GaAs:Mn, GaP:Mn // Journal of
Magnetism & Magnetic Materials, 258-259, pp. 237-240
(2003).

Yu.A. Izyumov and Yu.N. Skryabin, Double exchange model
and unique properties of the manganites // Physics- Uspekhi,
44, pp. 121-148 (2001).

I.M. Tsidilkovski and I.I. Lapilin, Narrow diluted semicon-
ductors // Physics-Uspekhi, 146, pp. 35-72 (1985).

D. M. Edwards, A. C. M. Green and K. Kubo, Electronic struc-
ture and resistivity of the double exchange model // J.
Phys.:C, 11, pp. 2791-2808 (1999).

M.I. Vladimir and V.A. Moskalenko, Diagram technique for
the Hubbard model // Theor . Math. Phys., 82, pp. 428-437
(1990).

V.A. Moskalenko, Perturbation theory for nonperiodic
Anderson model // Theor. Math. Phys., 110, pp. 308-322
(1997).

N. M. Plakida, R. Hayn, and J-L. Richard, Two-band singlet hole
model for copper-oxide plane / Phys. Rev. B, 51, pp. 16599-
16607 (1995).

1.V. Stasyuk, Approximate analytical dynamical mean-field ap-
proach to strongly correlated electron systems // Condensed
Matter Physics, 3, pp. 437-455 (2000).

S00, 7(2), 2004



