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Abstract. A model potential describing electron-ion interaction is presented for intrinsic semiconduc-
tors Si and Ge. The present model potential is single parametric, continuous in r-space and weaker
within core and Coulombic outside the core. The parameter of the potential is determined using the
equilibrium condition at zero pressure. The total energy, equation of states and bulk modulus of Siand
Ge are calculated using higher order perturbation theory based on pseudopotential formalism which
includes covalent correction term. Numerical results of total energy and bulk modulus obtained for the
Siand Ge are in good agreements with experimental data and found superior than other such theoretical
findings. The predicted equation of states of Si and Ge are also excellent.
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1. Introduction

The second order perturbation theory based on the
pseudopotential formalism has been applied to simple met-
als and their binary alloys, glasses and compounds with
many successful examples [1-5]. However, the second or-
der perturbation theory failed for covalent crystals be-
cause of covalent bonding character of these crystals.
These difficulties were removed with the extension of the
perturbation theory in terms of the pseudopotential by
taking into account higher order terms corresponding to
the covalent bonding effect [6-8]. The treatment of cova-
lent crystals is difficult not because of complex structure
of these crystals but mainly due to the determination of
the model potential. Soma [9] used this higher order per-
turbation theory to calculate total energy and bulk modu-
lus of IV semiconductors employing Ashcroft [10] empty
core model potential. In addition to the usual potential
parameter R, an adjustable additional parameter R, was
used by Soma to ensure minimum energy condition in the
first order perturbation energy [9]. He has also reported
the results using the Heine-Abarenkov[11] model poten-
tial. In all such reported applications [9, 12], people have
worked with historical model potentials like the Ashcroft
and Heine-Abarenkov model potentials. Here, in the
present paper, we extended the applications of our single
parametric model potential [13] to investigate total en-
ergy, equation of states and bulk modulus of Si and Ge
intrinsic semiconductors using the extended perturbation
theory.
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The analytical form of our model potential in r-space
[13] is
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where Z is valency of the ion, e is the electronic charge
and R, the model potential parameter. The potential pa-
rameter R, is determined by using zero pressure condi-
tion. The momentum-space representation of this model
potential is given by
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Where Q is the atomic volume and q is the wave vector.
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2. Computational method

For a covalent crystal with the diamond structure, based
on the higher order perturbation theory, the total energy
per electron of the crystal [6, 8] is given by

E:Ei+E0+E1+E2+Ec0v (3)
In equation (3), E;is electrostatic energy of point ions

immersed in the uniform gas of valence electrons, called
the Madelung energy, which is given by

243



A.R. Jivani et al.: Total energy, equation of states and bulk modulus od Si and Ge

5
3

E =-%2" @
fs

where 1 is the average interelectronic distance. The Ewald
constant () for covalent crystals is 1.67085.

In equation (3), £y is the sum of the kinetic, exchange
and correlation energies of the valence electron and is
given by
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E is the first order perturbation energy of the valence
electron due to the pseudopotential and is given by
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For present pseudopotential, the value of the elec-
tron-ion interaction is
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The second order term E; in equation (3) can be writ-
ten as
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were the summation 2’ excludes q =0 and is carried out
for 2006 reciprocal vectors. In above equation, structure
factor of the diamond lattice is given by

S(q) = Z Jq,q cos(q @), )
q
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where Q is the reciprocal vector and T = (a/4, al4, al4) is
a half of the vector in the body diagonal direction sepa-
rating the two interpenetrating FCC lattices of lattice
constant ‘a’.

In equation (8), the pseudopotential screened by the
electron gas is

we(@) =2

The screening factor &(q) for a free electron gas is

(10)
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here f{(q) is the local-field correction and x(q) is perturba-
tion characteristics which is given by
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where X = % and kf is the Fermi wave vector.
F
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The covalent bond correction (E.y ) corresponding
to the third and fourth-order terms to the total energy is
given by

2
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where the valence electron density of states per atom at
the Fermi surface n(Ey) = Z(2Er/3)". Inequation (13),
W(111) and W(220) are the screened pseudopotential
Fourier components at reciprocal points (111) and (220).

The equation of states and bulk modulus are obtained
from

(13)
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and

B= Qd—E (15)
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In the present calculations, to determine R, the pres-
sure less than 1073 kbar is taken as equal to zero. For the
incorporation of exchange and correlation effects to the
dielectric function £ (q), we adopted seven approxima-
tions, proposed by Hartree (H) [14], Hubbard and Sham
(HB) [15,16], modified Hubbard Sham (HS) [15-17],
Kleinman (K) [18], Kleinman and Langreth (KL)[18,
19], Vashistha and Singwi (VS) [20] and Taylor (T) [21].

3. Results and discussion

Tables 1 and 2 show the total energy per electron of semi-
conductors obtained by using equations (3-13) alongwith
experimental and other such reported values [9, 12]. Ttis
found from these tables that the effect of exchange and
correlation is clearly distinguishable. The inclusion of
exchange and correlation function suppresses the value
of total energy of Si and Ge than those obtained by the
static H dielectric function (without exchange and corre-
lation). Thus, decrease in total energy due to inclusion of
the exchange correlation to the dielectric function favors
the cohesion of semiconductors. Itis also predicted that
the Taylor’s f{q) gives minimum energy for both Siand
Ge.

Figures 1 and 2 show the pressure-volume relations
for Siand Ge alongwith the experimental data [12]. The
present finding of equation of states with various f{q) is
for Siand Ge at different volume are within the value
obtained by inclusion of H and T local field correction to
the dielectric function. Hence, to avoid the complication
in the figures, equation of states obtained due to Hand T
are plotted. At 9 % compression the effect of exchange
and correlation function of T with respect to H is 25 %
for Siand 28 % for Ge. Our equation of states for Si and
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Table 1. Total energy E per electron of Si (in Rydberg units)

Table 2. Total energy E per electron of Ge (in Rydberg units)

1@ Present Others Observed  f(q) |Present Others Observed
(9] 9] [12] [9] 9] [9] [12] [

H -1.9413 |- - -1.9758 H -1.8617 |- - -1.960

HB |-2.0458 |-1.9758 —1.9882 - HB |-1.9608 |-1.9418 -1.9663 —

HS |-2.0440 |-1.9734 -1.9859 - HS |-19605 |-19404 -19647 -—

K -2.0898 |-1.9965 -2.0078 - -1.980 K —20010 |-19654 -19874 - -1.978

KL |-2.0890 [-1.9965 -2.0041 - KL |-20037 |-19635 -19852 -

VS -2.1237 |-2.0003 -2.0105 - VS |-20397 |-19736 -19933 -—

T -2.1463 |- - - T 20597 |- - -

Ge are compared with the experimental data reported by
Bridgman, Vaidya et al (by piston-cylinder method) and
Senoo (by X-ray diffraction method)[12]. The excellent
agreement for equation of states of Si and Ge is concluded
in the present study.

The presently investigated bulk modulus (B) of semi-
conductors is tabulated in Tables 3 and 4 alongwith other
such theoretical and observed data [6, 9]. The valuesin the
parenthesis show the percentile deviation from the experi-
mental data. From tables 3 and 4, it is noticed that the devia-
tion of our result from observed values is 1.64 % to 18.25%
for Si and 2.14 % to 33.79 % for Ge. The results due to
others [6, 9] include the deviation ranging from 14.72 % to
31.59 % for Siand 0.94 % to 25.73 % for Ge from the ob-
served values. From Tables 1 to 4, we conclude that though
the calculated values of total energy and bulk modulus of
Siand Ge scatter in a bit wide range around the observed
values, present findings are more improved results as com-
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Fig. 1. The pressure-volume relations of Si
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pared to previously reported other such theoretical val-
ues [6, 9, 12]. Thus, the present study confirms the fruit-
fulness of our model potential in predicting electronic
properties of semiconductors. This also provides better
set of theoretical results on total energy, equation of states
and bulk modulus for intrinsic semiconductors Siand Ge
for further comparison either with theoretical or experi-
mental results.
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Table 3. The bulk modulus of Si (in 10 12 dyne/cm?)

Table 4. The bulk modulus of Ge (in 10!2 dyne/cm?)

fq) Present Others Observed
(6] %] (%] %]
H 1.1565(18.25) |0.833 - -
(14.83)
HB |1.0315(547) |[0.775 0.852  0.801
(20.76) (12.88) (18.1)
HS |1.0041 2.67) [0.729 0.834  0.780
(25.46) (14.72) (20.24)
K 09940 (1.64) |- 0.810  0.754 0.978
(17.18)  (22.90)
KL ]0.9369 (4.20) |- 0.774  0.717
(20.86) (26.69)
VS 09176 (6.17) |- 0.723  0.669
(26.07) (31.59)
T 0.8625(11.81) |- - -
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