Study of non-reversible photostructural transformations in $\text{As}_{40}\text{S}_{60-x}\text{Se}_x$ layers applied for fabrication of holographic protective elements

1 Polight Technologies Ltd., 291 Cambridge Science Park, Cambridge, CB OWF, UK
2 University of Pardubice, Pardubice, 53210, Czech Republic
3 Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv, Ukraine

Abstract. Thin vacuum-evaporated layers of $\text{As}_{40}\text{S}_{60-x}\text{Se}_x$ composition are investigated using Raman spectroscopy from the viewpoint of thermo- and photostructural transformations in them. These transformations are considered as changes in their network structure including three types of pyramidal units AsS_2Se_2, AsSe_2Se_2 and $\text{AsS(Se)}_2\text{Se}_2$ as well as $\text{As}_x\text{S}(\text{Se})_y\text{S}_z$ and $\text{S}(\text{Se})_y\text{S}_z$ fragments in its initial state. Annealing or light exposure result in polymerization of the molecular groups and the decreasing number of homopolar bonds, which is thermodynamically favorable. Characteristics of sensitivity to photon and electron exposure were investigated. Diffraction efficiency performances of a microlrelief fabricated using these layers are presented.

Keywords: thin chalcogenide layer, non-reversible transformation, photostructural transformation, Raman spectroscopy, holographic protective elements.

Paper received 15.07.02; revised manuscript received 02.09.02; accepted for publication 10.12.02.

1. Introduction

Chalcogenide glasses of As-S-Se compositions are perspective materials for many technological applications: holography, micro lithography, information storage, optoelectronics, etc. [1-6]. The application possibilities are connected with their imaging abilities due to various photostructural transformations under the influence of the external factors: UV, VIS light, e-beams, X-rays, etc. These photostructural changes in evaporated films are understood as changes in their network structure. The microscopic network change is accompanied by macroscopic ones – in optical, chemical, mechanical properties. Raman spectroscopy is the useful method for observation of such changes in the microscopic network. It is non-destructive technique, which can bring information on the changes in chemical bonding and molecular structure of chalcogenide vitreous semiconductor (ChVS) films. This paper deals with the photostructural transformations in vacuum-evaporated $\text{As}_{40}\text{S}_{20}\text{Se}_{40}$ layers studied by Raman spectroscopy.

2. Experiment

The bulk $\text{As}_{40}\text{S}_{20}\text{Se}_{40}$ materials were prepared by the direct synthesis from 5 N purity elements in evacuated quartz ampoules at 700–750 °C for 8–24 h. After synthesis, the ampoules were quenched in a water at a temperature of ~15 °C, which is equivalent to a cooling rate of the order of 10 K/s. In some cases $\text{As}_{40}\text{S}_{20}\text{Se}_{40}$ glasses produced by the commercial company (SDB “Quant”, Uzhgorod, Ukraine) were used. Thin ChVS films ($d = 0.4–5 \mu m$) were deposited by the vacuum thermal evaporation ($p = 10^{-3} \text{ Pa}$) from the resistance-heated quartz or Mo boats onto clean glass substrates (microscopic slides) kept under room temperature. Deposition rate was continuously measured using the quartz microbalance technique, and in the present study it was within 1–6 nm/s. Exposure was carried out either by halogen lamp ($I = 20 \text{ mW/cm}^2$, IR cut-off filter) or by natural light. Some samples were annealed at $T = T_g$, ~ 20°C, where T_g stands for glass transition temperature.

The Raman spectroscopy investigations were carried out by using Fourier transformation IR spectrophotometer IFS55 with FRA 106 Raman module, Bruker, Germany). The laser irradiation at the wavelength of 1.06 μm (having an output power 90 mW during measurements of glasses and 15 mW for measurements of the films) was used for the excitation of the Raman spectra. In our case, this wavelength value was essential because irradiation of samples in this range causes no detectable photo-structural transformations within the scale of 100 scans for glasses and 1000 scans for films. The resolution of the Raman spectrometer was 1 cm$^{-1}$. All the experiments were performed at room temperature. For analy-
sis, the Raman spectra have been reduced by the Shuker-Gammon method [7] and normalized by area.

3. Results and discussion

For Raman spectra of As$_{40}$S$_{80}$ and As$_{40}$Se$_{60}$ glasses (Fig. 1b), the broad bands with maxima at 345 and 232 cm$^{-1}$, respectively, are dominant features. Usually they are described within the frames of the molecular model [8]. For more detailed analysis of Raman spectra of As$_{40}$S$_{60}$ (As$_{40}$Se$_{60}$) glasses it is necessary to take into account main types of its initial structural units: heteropolar As-S (As-Se) bonds in the framework of As$_2$S$_3$ (As$_2$Se$_3$) pyramids, bridge As-S-As (As-Se-As) complexes, homopolar As-As or S-S (Se-Se) bonds in different, fully or partially polymerized molecular fragments. The dominant feature of the As$_{40}$S$_{60}$ glass is the As$_2$S$_3$ pyramid unit (strong band at 345 cm$^{-1}$). Main band is asymmetrical and is the result of overlap of several bands, see for example peculiarities at 316, 363, 381, 400 cm$^{-1}$. There are also detectable bands from structural units containing homopolar As-As and S-S bonds (bands at 191, 223, 235 and 495 cm$^{-1}$). The peak at 363 cm$^{-1}$ is attributed to the presence of As$_5$S$_4$ structural units, which contain As-As bonds. The wide shoulder in 380–400 cm$^{-1}$ region is attributed to the interaction between As$_3$S$_3$ pyramids. Raman spectra of As$_{40}$Se$_{60}$ glass have the similar structure: the strong band at 232 cm$^{-1}$ (the largest part of structural units are As$_2$S$_3$ pyramids) with peculiarities at 249 and 281 cm$^{-1}$ and weak 111 and 142 cm$^{-1}$ bands.

It can be expected that for intermediate As$_{40}$S$_{60-x}$Se$_x$ compositions the As$_2$S$_3$ and As$_3$S$_2$/pyramidal units will also represent the largest number of structural units. And indeed, spectra of As$_{40}$S$_{20}$Se$_{60}$ glasses (Fig. 1a, curve 1) show two-phase structure (dominant features are the two main broad bands with maxima at 244 and 355 cm$^{-1}$). It should be pointed out that both bands are asymmetrical and they are the result of overlapping several bands. Sum of the Raman spectra of As$_{40}$S$_{60}$ and As$_{40}$Se$_{60}$ glasses taken with necessary ratio (1/3 and 2/3, respectively) gives good rough approximation for Raman spectra of As$_{40}$S$_{20}$Se$_{40}$ glasses (Fig. 1a, curve 2). But, as can be seen from the Fig. 1a, experimentally obtained Raman spectra of As$_{40}$S$_{20}$Se$_{40}$ glasses are somewhat different of that for the curve 2. Difference spectra (Fig. 1a, curve 3) show bands with maxima at 257 and 361 cm$^{-1}$. It is possible to consider this as indication of the increased presence of Se$_4$ chains (band 258 cm$^{-1}$) and As$_4$S$_4$ (363 cm$^{-1}$) molecular fragments. Also it can be related to the presence of the mixed As(S/Se)$_3$ pyramid structural units in addition to As$_2$S$_3$ and As$_2$Se$_3$ units in the network of As$_{40}$S$_{20}$Se$_{40}$ glass. Frequencies of their vibrational modes are different from that of As$_2$S$_3$ and As$_2$Se$_3$ structural units [9].

We can see that the two-phase structure for Raman spectra of as-evaporated As$_{40}$S$_{20}$Se$_{40}$ films is preserved as well (Fig. 2 curve 1). Raman spectra of as-evaporated As$_{40}$S$_{20}$Se$_{40}$ films (Fig. 2 curve 1, Fig. 3, curve 1) also show the presence of numerous weak bands (126, 160, 171, 192 cm$^{-1}$, etc.) which corresponds to the presence of As rich and S(Se) rich molecular fragments. Two intensive and broad bands at 257 and 353 cm$^{-1}$ are the dominant features. Also it can be seen that, as in the case for glasses, the sum of the Raman spectra of As$_{40}$S$_{60}$ and As$_{40}$Se$_{60}$ films taken with above ratio (1/3 and 2/3, respectively) gives good rough approximation for Raman spectra of As$_{40}$S$_{20}$Se$_{40}$ films (Fig. 2, curve 2). Differences are in the same spectral region as in the case of glasses. Peak at 260 cm$^{-1}$ can be considered as showing increased presence of the Se$_4$ chains and also to the presence of the mixed As(S/Se)$_3$ pyramid structural units. It is necessary to note that the band near 495 cm$^{-1}$, which is well pronounced in the spectra of As$_{40}$S$_{60}$ films, is absent in the Raman spectrum of as-evaporated As$_{40}$S$_{20}$Se$_{40}$ films. This band is connected with the presence of S-S bonds, and its absence can be considered as indication that almost all sulphur is used in pyramidal units, and it gives an additional support for attribution of the band peaking at 260 cm$^{-1}$ to the somehow increased presence of Se$_n$ mo-

![Fig 1](image1.png)

Fig 1. a – Raman spectra of As$_{40}$S$_{20}$Se$_{60}$ glass – curve 1. Curve 2 – sum of Raman spectra of As$_{40}$Se$_{60}$ and As$_{40}$S$_{60}$ glasses taken in ratio 2/3 and 1/3, respectively. Curve 3 – difference between curves 1 and 2. b – Raman spectra of As$_{40}$S$_{60}$ – curve 1 and As$_{40}$Se$_{60}$ – curve 2 glasses. Spectra As$_{40}$S$_{20}$Se$_{40}$, As$_{40}$Se$_{60}$ and As$_{40}$S$_{60}$ glasses were reduced according to Shuker-Gammon procedure and normalized on area.

SQO, 5(3), 2002
lecular fragments. The band in the region 345–380 cm⁻¹ with peaks at 354 and 371 cm⁻¹ is connected, as in the previously considered case for glasses, with the presence of mixed As₄(Se)₃/₂ pyramidal structural units and As₄S₄ units in addition to As₃S₇ and As₄S₈ units in the network of As₄₀S₈₀Se₄₀ films. Somewhat increased presence of Se₈ and As₄S₄ molecular fragments can be considered as caused by deviation from the statistical behaviour under substitution of Se by S atoms in As₄₀S₈₀-₅Se₈ glasses [10-12].

As can be seen from Raman spectra (Fig. 3) structure of evaporated As₄₀S₈₀Se₄₀ thin films (curve 1) differs from the glass one (curve 5). The structure of the evaporated As₄₀S₈₀Se₄₀ film on the basis of the above presented considerations can be presented in the form of matrix, which consists of pyramidal units AsS₃/₂, AsSe₃/₂ and AsS₄/₃/₂. This matrix also contain considerable amounts of As₄(Se)₄ and S(Se)₄ fragments which contain As-As and S(Se)-S(Se) homopolar bonds. Other defects, pores and hollows can be present in the structure as well.

Annealing or exposure results in polymerization of the molecular groups in the main glass matrix, thus the number of homopolar bonds, defects and hollows is decreased. The polymerization process is clearly observed in Raman spectra (Fig. 3, curves 1–4) where with the increase of exposure dose the bands corresponding to the presence of homopolar bonds are decreased in intensity and the spectra become similar to the bulk ones. Photostructural changes start from the initial states, which are determined by the films preparation conditions and are different from the structure of respective glass. Bonds switching under the influence of the external factors (exposure, annealing) with the decrease of the number of homopolar bonds is favourable thermodynamically. Simple consideration of the evolution of the number of homopolar bonds under the exposure gives exponential decay [12]. Photostructural transformations on the microscopic level results in substantial changes in optical, mechanical and chemical properties of the layers. Changes in chemical properties provide possibility to fabricate microreliefs of different types, which can be used in many practical applications.

For example, various holographic protective elements were successfully fabricated using As-S-Se layers.

4. Application of As₄₀S₈₀-₅Se₈ layers for fabrication of holographic protective elements

Such inorganic resists are sensitive to visible and ultraviolet radiation and electron beams which enable one to produce master optical-digital holographic elements possessing many safety levels [13]. Samples for investigations were prepared using thermal evaporation of the glass with above mentioned composition in vacuum onto a glass substrate. When exposing photosensor to obtain interferential 2D/3D patterns, we used electron-beam submicrometer technology and the He-Cd laser radiation with the wavelength λ = 441 nm [13-14]. The exposure was chosen from the range 20 to 300 mJ/cm², and spatial frequencies of obtained gratings were 600 to 1600 mm⁻¹. In addition, resist performances were investigated using the Dot-matrix technology. The resist samples were processed using a waterless organic selective etchant based onamines [15-17]. Topology of obtained microstructures was investigated using atomic force microscope of Nanoscope IIIa Dimension 3000 type.

Results of investigations showed that As₄₀S₈₀-₅Se₈ (x = 20...40) photosensit is characterized by higher holographic sensitivity (Fig. 4–5). Holographic sensitivity in our case was determined as energetic expose necessary for providing given value of diffraction efficiency. Measurements of diffraction efficiency was carried out using 0.63 mm wavelength.

This enables to get combined optical-digital protective element: digital hologram; optical and digital holo...
Fig. 4. Holographic sensitivity of $\text{As}_{40}\text{S}_{60-\times}\text{Se}_x$ photosensor under recording of diffraction structures by using the wavelength 0.63 μm.

Fig. 5. Holographic sensitivity of $\text{As}_{40}\text{S}_{60-\times}\text{Se}_x$ photosensor under recording of diffraction structures by using the wavelength 0.44 μm.

5. Conclusions

Photostructural transformations in $\text{As}_{40}\text{S}_{60-\times}\text{Se}_x$ layers result in polymerization of the molecular groups in the main glass matrix. The number of molecular fragments containing homopolar bonds is decreased as a result of exposure or annealing.

High level of photostructural transformations in $\text{As}_{40}\text{S}_{60-\times}\text{Se}_x$ layers provides possibility of their use as recording media in fabrication of holographic protective elements.

Acknowledgments

The authors thank Ministry of Education and Science of Ukraine for financial support and express his gratitude to colleagues from Institute of Semiconductor Physics (NAS of Ukraine), Specialized Enterprices “Holography” and “Optronics” for their help in carrying out the holographic experiments.

References