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Abstract. The theory of free-carrier absorption is given for a quasi one-dimensional
semiconducting structures in a quantizing magnetic field for the case when carriers are scat-
tered by polar optical phonons and acoustic phonons and the radiation field is polarized
perpendicular to the magnetic field direction. The usual resonance condition 0ωω +Ω=cP ,
where P is an integer and w0 and wc are the optical-phonon frequency and cyclotron fre-

quency, respectively, becomes 
,

0ωω +Ω=P with ω~  equal to  22 ωω +ñ . The magnetic field
dependence of the absorption for the transverse configuration can be explained in terms of
phonon-assisted transitions between various Landau levels of carriers.
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1. Introduction

The application of magnetic field to crystal changes the
dimensionality of electronic levels and leads to a redis-
tribution of the density of states. Quantum well wires
(QWW) in a magnetic field have been the subject of a few
investigations [1-5]. In [1] rectangular QWWs were treated
in the decoupled approximation. Concerning the theo-
retical work on magnetotransport in QWWs, we are aware
of the Hall resistivity treatments of Refs 2 and 3 and of
magnetophonon oscillations in Ref. 4. In [5] the field-
induced change in optical anisotropy was studied for a
quasi - two- dimensional (Q2D) system subject to a peri-
odic modulation. The effect of a magnetic field on con-
ductance quantization in quasi-one �dimensional (Q1D)
systems is reviewed in [6]. An essential progress in tech-
niques of growth on patterned substrates and of cleaved-
edge overgrowth has led to QWWs with very good opti-
cal properties [7�10], thus renewing the interest for the
basic properties of Q1D systems.

In this work, we are interested in the effect of mag-
netic field on the free carrier absorption (FCA) in semi-
conductor QWWs. Over the past two decades the investi-
gation of FCA in low-dimensional systems has been very
intense. FCA is one of the powerful means to understand

the scattering mechanisms of carriers. In bulk semicon-
ductors, it accounts for the absorption of electromagnetic
radiation of frequencies Ω  such that Ωh < gE , where

gE  is the band gap [11]. In quantum well (QW) struc-
tures, apart from the direct interband and intersubband
optical transitions, the optical absorption can also take
plase via indirect intrassubband optical transitions in
which carriers absorb or emit photons with a simultane-
ous scattering by phonons or other imperfections. The
quantum theory for FCA in Q2D structures is well devel-
oped both in the absence [12�22] and in the presence of
quantizing magnetic fields [23]. In the works [23], we
have extended the theory of FCA in Q2D systems in the
presence of a quantizing magnetic field when  phonon
scattering is important, and it was found that FCA coef-
ficient oscillates as a function of the magnetic field and
photon frequency with resonances occuring when

0ωω ±Ω=ñP , where Ω,ñω  and 0ω  are the cyclotron,
photon and phonon frequencies, respectively, and where
P is an integer. The theory FCA has been studied theo-
retically in quasi-one dimensional (Q1D) structures only
in the absence of quantizing magnetic field [24�27].

In this paper, we extend the quantum theory of FCA
developed previously to take into account the presence of
quantizing magnetic fields. We consider FCA for the case
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when carriers are scattered by the alloy disorder, acous-
tic phonons and boundary roughness. We will present a
calculation of FCA coefficient for electromagnetic ra-
diation polarized along the length of the wire. The mag-
netic field is assumed to be perpendicular to the wire axis,
so that the dispersion of one-dimensional subbands is
strongly modified.

2. Formalism

We consider Q1D electron gas confined in a wire of di-
mensions zyx LLL ,, . We model transverse confinement
via an infinite square well approximation to a
heterojunction quantum well (z axis) and a parabolic
potential of frequency ω (x axis). Moreover, a magnetic
field B, parallel to the z axis, is applied to the wire. The
electrons are free in the direction of the wire (y axis).
Correspondingly, the one-electron eigenfunctions 

yNlkΨ
and energy eigenvalues 

yNlkE  are given by
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where N = 0,1,2,�, l = 1,2,3,�, and 222
0 2 zLmE ∗= hπ ,

ky is the wave vector in the y direction, m* is the effective
mass of the electron, cmeHñ

∗=ω  is the cyclotron fre-

quency, 2222 /~~  ,~ ωωωωω ∗=+= mmñ . Moreover,

( )0xxN −Φ  is the well-known harmonic-oscillator wave
function centered at ykRbx 2

0
~~=  with ωω ~~

cb =  and
ω~~2 ∗= mR h .

The FCA coefficient α, which is related to the quan-
tum-mechanical transition probabilities in which the car-
riers absorb or emit a photon with the simultaneous scat-
tering of carriers by phonons, is given by [12]

∑∈=
i

ii fW
cn0

21

α (3)

Here ∈  is the dielectric constant of material, 0n  is the
number of photons in the radiation field and 

if  is the
free-carrier distribution function. The sum is over all the
possible initial states �i� of the system. The transition prob-
abilities iW can be calculated using the standard second-
order Born golden rule approximation:
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Here Ei and Ef  are the initial and final state energies,
respectively, of electrons, Ωh  is the photon energy, qωh
is the phonon energy, and iMf ±  are the transition
matrix elements from the initial state to the final state for

the interaction between electrons, photons and phonons.
These transition matrix elements can be represented by
the following expression:
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where HR is the interaction Hamiltonian between the elec-
trons and the radiation field, Vs is the scattering poten-
tial due to the electron-phonon interaction.

Using the wavefunctions given by the expression (1),
the matrix elements of the electron-photon interaction
Hamiltonians can be written as
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where V is the volume of the crystal. Here the radiation
field is polarized along the wire, ε is the polarization
vector of the radiation field.

We shall use two different scattering processes: po-
lar-optical scattering and acoustic -phonon scattering.
The matrix elements nlkVlnk ysy ′′′  of electron-phonon
interaction corresponding to the above two processes are
equal to

( ) ( )zllyxnnqkkjysy qqqJCnlkVlnk
yyy ′′±′ Λ′=′′  ,δ (7)

where Jn′, n(qx,qy) is the overlap integral of the harmonic
wave functions:

( )

( ) ( ) ( )∫
∞

∞−
′ −Φ−−Φ=

=

yNyyNx

yxNN

kRbxqRbkRbxxiqdx

qqJ

222

,'

~~~~~~
exp

(8)

( ) ( ) 











=Λ ∫

z

L

z
z

z
zll L

zl

L

zl
ziqdz

L
q

z ππ

0

' sin
'

sinexp
2

(9)

Ñj
′ 2=Cj

2Fj(q)

The function Λll′ (qz) given by Eq. (8 ) is crucial for our
calculation whose suitable approximation was discussed
by Ridley [28].

For the electron-polar-optic phonon interaction we
have

,
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Here, ε∞ and ε0 are the high-frequency and static dielec-
tric constants of the semiconductor, respectively. As usual,
we take phonon energy qωh  = 0ωh  ≈ const.
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where ( )+−
00 NN  describes the annihilation (creation) of

the phonon.
When acoustic phonon scattering is dominant, one

may obtain
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In the case of bulk materials and at extremely strong
magnetic fields, the electronic wave functions have small
absolute values of momentum components parallel to the
applied magnetic field.  Therefore, we can neglect the qz
dependence in the interaction potential given by Ñj

¢.
The electron distribution function for quasi-one-di-

mensional nondegenrate electron gas in the presence of
magnetic field can be shown as follows:
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where ( )∑ Ε=
l

BTKl /exp 0
2δ , ne is the concentration of

electrons.
Below, we shall use the following identities:
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Now we make the same approximation as in [4], i.e.

we take ( ) 02
~2

2
2

=−
∗ yyy qkq

m

h
, in δ functions. Using Eqs

(4-6) and (9) in (3) and also identities (11), we obtain the
following expression for the FCA coefficient for polar
and acoustic phonon scattering in a Q1D semiconducting
structure in  the presence of a magnetic field:
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It is particularly convenient to express our results in
terms of the dimensionless ratio of the FCA coefficient in
presence of the magnetic field to that in the absence of the
field. For scattering through acoustic phonon, we adopt
the results [24]
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and K1(x) is the modified Bessel function of the second
kind, ωω

∗= ml h
2 . In the quantum limit, in which only the

ni = nf = li = lf = 1 quantum level is occupied and

ñωh >>KBT, only the lowest Landau level N=0 is ther-

mally populated, the ratio ( ) ( )0/ ACAC H αα  takes the par-

ticularly simple form
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For optical phonon scattering, the ratio takes a simi-
lar form

( )
( ) ( )Ω= ,,
0

c
POL

POL TF
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(16)

From Eqs (15)�(16), it can be seen that, the ratio de-
pends only upon the magnetic field, absolute tempera-
ture, and photon frequency and does not depend upon
such material parameters as the values of the deforma-
tion potential, sound velocity, or density of the material,
although, of course, the absolute value of absorption co-
efficient does depend upon the numerical values of these
parameters.

(12)
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3. Discussion

Thus, we have obtained general expressions for FCA co-
efficients for QWWs  in the presence of the quantizing
magnetic field. From Eqs (12)-(13) it can be seen that, in
the extreme quantum limit ( ω~h >>KBT, Ni = 0, li = lf = 1)
for polar optical phonons, the FCA coefficient oscillates
as a function of the magnetic field and photon frequency
with resonances occuring when 0

~ ωω ±Ω=P . Since
ñω <ω~, for ω > 0, the resonances are shifted to smaller

magnetic fields. For ω = 0, i.e., in the absence of con-
finement, cb ωω == ~  ,1

~2 , and we recover the usual reso-
nance condition 0ωω ±Ω=ñP . For the elastic scattering
by acoustic phonons, resonances are expected when

0
~ Ω=ωP .

The oscillatory dependence of the absorption on mag-
netic field can be understood in terms of the Landau
subband structure of the electronic energy levels in
quantizing magnetic fields. As the magnetic field, and
therefore ω~, increases there are fewer and fewer subbands
to which the transition can place until finally. Every time
that the ratio ωω ~/)( 0±Ω  equals an integer value, the
transition can take place with an additional subband
ending as a final state.

In conclusion, we predict that FCA coefficient should
increase with magnetic field with an oscillatory depend-
ence on the field when Ω >ω~ . The magnetic field de-
pendence of the FCA coefficient is explained in terms of
the field dependence of the scattering rates and the possi-
bility of phonon-assisted transitions between various
Landau levels when Ω >ω~.
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